Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework
- URL: http://arxiv.org/abs/2409.16146v2
- Date: Wed, 04 Dec 2024 03:21:44 GMT
- Title: Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework
- Authors: Lu Chen, Ruqing Zhang, Jiafeng Guo, Yixing Fan, Xueqi Cheng,
- Abstract summary: We focus on how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications.
Our research identifies two critical latent factors affecting RAG's confidence in its predictions.
We develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers.
- Score: 77.45983464131977
- License:
- Abstract: Retrieval-augmented generation (RAG) has emerged as a popular solution to mitigate the hallucination issues of large language models. However, existing studies on RAG seldom address the issue of predictive uncertainty, i.e., how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications. In this work, we emphasize the importance of risk control, ensuring that RAG models proactively refuse to answer questions with low confidence. Our research identifies two critical latent factors affecting RAG's confidence in its predictions: the quality of the retrieved results and the manner in which these results are utilized. To guide RAG models in assessing their own confidence based on these two latent factors, we develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers. We also introduce a benchmarking procedure to collect answers with the option to abstain, facilitating a series of experiments. For evaluation, we introduce several risk-related metrics and the experimental results demonstrate the effectiveness of our approach. Our code and benchmark dataset are available at https://github.com/ict-bigdatalab/RC-RAG.
Related papers
- Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG) is an advanced technique designed to address the challenges of Artificial Intelligence-Generated Content (AIGC)
RAG provides reliable and up-to-date external knowledge, reduces hallucinations, and ensures relevant context across a wide range of tasks.
Despite RAG's success and potential, recent studies have shown that the RAG paradigm also introduces new risks, including privacy concerns, adversarial attacks, and accountability issues.
arXiv Detail & Related papers (2025-02-08T06:50:47Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.
Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - Understanding the Impact of Confidence in Retrieval Augmented Generation: A Case Study in the Medical Domain [27.517686277349735]
We study the impact of RAG on confidence within the medical domain under various configurations and models.
Our findings reveal large variation in confidence and accuracy depending on the model, settings, and the format of input prompts.
arXiv Detail & Related papers (2024-12-29T00:58:33Z) - Towards More Robust Retrieval-Augmented Generation: Evaluating RAG Under Adversarial Poisoning Attacks [45.07581174558107]
Retrieval-Augmented Generation (RAG) systems have emerged as a promising solution to mitigate hallucinations.
RAG systems are vulnerable to adversarial poisoning attacks, where malicious passages injected into retrieval databases can mislead the model into generating factually incorrect outputs.
This paper investigates both the retrieval and the generation components of RAG systems to understand how to enhance their robustness against such attacks.
arXiv Detail & Related papers (2024-12-21T17:31:52Z) - Toward Robust RALMs: Revealing the Impact of Imperfect Retrieval on Retrieval-Augmented Language Models [5.10832476049103]
We identify three common scenarios-unanswerable, adversarial, conflicting-where retrieved document sets can confuse RALM with plausible real-world examples.
We propose a new adversarial attack method, Generative model-based ADVersarial attack (GenADV) and a novel metric Robustness under Additional Document (RAD)
Our findings reveal that RALMs often fail to identify the unanswerability or contradiction of a document set, which frequently leads to hallucinations.
arXiv Detail & Related papers (2024-10-19T13:40:33Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - Black-Box Opinion Manipulation Attacks to Retrieval-Augmented Generation of Large Language Models [21.01313168005792]
We reveal the vulnerabilities of Retrieval-Enhanced Generative (RAG) models when faced with black-box attacks for opinion manipulation.
We explore the impact of such attacks on user cognition and decision-making.
arXiv Detail & Related papers (2024-07-18T17:55:55Z) - C-RAG: Certified Generation Risks for Retrieval-Augmented Language Models [57.10361282229501]
We propose C-RAG, the first framework to certify generation risks for RAG models.
Specifically, we provide conformal risk analysis for RAG models and certify an upper confidence bound of generation risks.
We prove that RAG achieves a lower conformal generation risk than that of a single LLM when the quality of the retrieval model and transformer is non-trivial.
arXiv Detail & Related papers (2024-02-05T16:46:16Z) - Less is More: Mitigate Spurious Correlations for Open-Domain Dialogue
Response Generation Models by Causal Discovery [52.95935278819512]
We conduct the first study on spurious correlations for open-domain response generation models based on a corpus CGDIALOG curated in our work.
Inspired by causal discovery algorithms, we propose a novel model-agnostic method for training and inference of response generation model.
arXiv Detail & Related papers (2023-03-02T06:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.