論文の概要: 3DPX: Progressive 2D-to-3D Oral Image Reconstruction with Hybrid MLP-CNN Networks
- arxiv url: http://arxiv.org/abs/2408.01292v1
- Date: Fri, 2 Aug 2024 14:28:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 13:17:55.947939
- Title: 3DPX: Progressive 2D-to-3D Oral Image Reconstruction with Hybrid MLP-CNN Networks
- Title(参考訳): 3DPX:ハイブリッドMLP-CNNネットワークを用いたプログレッシブ2次元3次元口腔画像再構成
- Authors: Xiaoshuang Li, Mingyuan Meng, Zimo Huang, Lei Bi, Eduardo Delamare, Dagan Feng, Bin Sheng, Jinman Kim,
- Abstract要約: パノラマX線(パノラマX線、英: Panoramic X-ray、PX)は、歯科医療において、広く利用でき、低コストである。
2次元投影画像として、PXは3次元解剖情報を含まない。
2次元から3次元の経口PX再構成のためのプログレッシブハイブリッド多層パーセプトロン(MLP)-CNNピラミドネットワーク(DPX)を提案する。
- 参考スコア(独自算出の注目度): 16.931777224277347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Panoramic X-ray (PX) is a prevalent modality in dental practice for its wide availability and low cost. However, as a 2D projection image, PX does not contain 3D anatomical information, and therefore has limited use in dental applications that can benefit from 3D information, e.g., tooth angular misa-lignment detection and classification. Reconstructing 3D structures directly from 2D PX has recently been explored to address limitations with existing methods primarily reliant on Convolutional Neural Networks (CNNs) for direct 2D-to-3D mapping. These methods, however, are unable to correctly infer depth-axis spatial information. In addition, they are limited by the in-trinsic locality of convolution operations, as the convolution kernels only capture the information of immediate neighborhood pixels. In this study, we propose a progressive hybrid Multilayer Perceptron (MLP)-CNN pyra-mid network (3DPX) for 2D-to-3D oral PX reconstruction. We introduce a progressive reconstruction strategy, where 3D images are progressively re-constructed in the 3DPX with guidance imposed on the intermediate recon-struction result at each pyramid level. Further, motivated by the recent ad-vancement of MLPs that show promise in capturing fine-grained long-range dependency, our 3DPX integrates MLPs and CNNs to improve the semantic understanding during reconstruction. Extensive experiments on two large datasets involving 464 studies demonstrate that our 3DPX outperforms state-of-the-art 2D-to-3D oral reconstruction methods, including standalone MLP and transformers, in reconstruction quality, and also im-proves the performance of downstream angular misalignment classification tasks.
- Abstract(参考訳): パノラマX線(パノラマX線、英: Panoramic X-ray、PX)は、歯科医療において、広く利用でき、低コストである。
しかし、2Dプロジェクション画像として、PXは解剖学的情報を含まないため、3D情報(例えば、歯角ミスリグメンションの検出と分類)の恩恵を受けることができる歯科応用に限られている。
2D PXから直接3D構造を再構築し、直接2Dから3Dマッピングのために主に畳み込みニューラルネットワーク(CNN)に依存する既存の手法の限界に対処する研究が最近行われた。
しかし,これらの手法は深度軸空間情報を正確に推測することができない。
さらに、畳み込み演算の固有の局所性によって制限され、畳み込みカーネルはすぐ近くのピクセルの情報のみをキャプチャする。
本研究では2D-to-3D経口PX再建のためのプログレッシブハイブリッド多層パーセプトロン(MLP)-CNNピラミドネットワーク(DPX)を提案する。
本稿では, 3次元像を3DPXで段階的に再構成し, 各ピラミッドレベルでの中間再構成結果にガイダンスを付与するプログレッシブ・コンストラクション戦略を提案する。
さらに, 細粒度長範囲依存の獲得を約束するMLPの出現により, 再建中の意味理解を改善するため, 3DPXはMLPとCNNを統合した。
464研究を含む2つの大規模データセットの大規模な実験により、我々の3DPXは、スタンドアローンのMLPやトランスフォーマーを含む最先端の2D-to-3D経口再建法を再構築品質で上回り、下流の角方向の不整合分類タスクの性能を即時的に向上させることを示した。
関連論文リスト
- DuoLift-GAN:Reconstructing CT from Single-view and Biplanar X-Rays with Generative Adversarial Networks [1.3812010983144802]
本稿では,DuoLift Generative Adversarial Networks (DuoLift-GAN)を紹介する。
これらの3D出力は統合された3D特徴マップにマージされ、完全な3D胸部ボリュームにデコードされ、よりリッチな3D情報キャプチャを可能にする。
論文 参考訳(メタデータ) (2024-11-12T17:11:18Z) - 3DPX: Single Panoramic X-ray Analysis Guided by 3D Oral Structure Reconstruction [19.164694943725202]
パノラマX線(パノラマX線、英: Panoramic X-ray、PX)は、歯学の実践において、広範囲の可用性と低コストのため一般的なモダリティである。
3次元構造の2次元投影として、PXは解剖学的情報損失に悩まされ、PX診断は3次元画像モダリティと比較して制限される。
PX画像解析に使用する2次元PXから欠落した3次元解剖情報を合成する2D-to-3D再構成法が検討されている。
論文 参考訳(メタデータ) (2024-09-27T12:44:06Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
本稿では3つの進歩を取り入れた方法論であるStableDreamerを紹介する。
まず、SDS生成前の等価性と、簡単な教師付きL2再構成損失を定式化する。
第2に,画像空間拡散は幾何学的精度に寄与するが,色調の鮮明化には潜時空間拡散が不可欠であることを示す。
論文 参考訳(メタデータ) (2023-12-02T02:27:58Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
本稿では,2次元CNNにおける3次元特徴をエンコードする2次元モデルSlice SHift UNetを提案する。
より正確にマルチビュー機能は、ボリュームの3次元平面に沿って2次元の畳み込みを実行することで協調的に学習される。
提案手法の有効性は,多モード腹部多臓器軸 (AMOS) と Cranial Vault (BTCV) データセットを越えたマルチアトラスラベリング (Multi-Atlas Labeling Beyond the Cranial Vault) で検証した。
論文 参考訳(メタデータ) (2023-07-24T14:53:23Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - Oral-3Dv2: 3D Oral Reconstruction from Panoramic X-Ray Imaging with
Implicit Neural Representation [3.8215162658168524]
Oral-3Dv2は、単一のパノラマX線画像から3Dラジオロジーを再構成する非逆学習モデルである。
本モデルは,2次元座標を3次元空間内のボクセルの密度値にマッピングすることにより,暗黙的に3次元口腔構造を表現することを学習する。
我々の知る限りでは、これは1枚のパノラマX線画像から3Dラジオグラフィ再構成における非逆学習モデルの最初の作品である。
論文 参考訳(メタデータ) (2023-03-21T18:17:27Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z) - Pix2Vox++: Multi-scale Context-aware 3D Object Reconstruction from
Single and Multiple Images [56.652027072552606]
Pix2Vox++という,単一ビューと複数ビューの3Dオブジェクト再構成のための新しいフレームワークを提案する。
良く設計されたエンコーダデコーダを用いて、各入力画像から粗い3Dボリュームを生成する。
次に、マルチスケールコンテキスト対応融合モジュールを導入し、全ての粗い3Dボリュームから異なる部分の高品質な再構成を適応的に選択し、融合した3Dボリュームを得る。
論文 参考訳(メタデータ) (2020-06-22T13:48:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。