Underwater Object Detection Enhancement via Channel Stabilization
- URL: http://arxiv.org/abs/2408.01293v1
- Date: Fri, 2 Aug 2024 14:28:49 GMT
- Title: Underwater Object Detection Enhancement via Channel Stabilization
- Authors: Muhammad Ali, Salman Khan,
- Abstract summary: Marine trash endangers the aquatic ecosystem, presenting a persistent challenge.
We use Detectron2's backbone with various base models and configurations for this task.
We propose a novel channel stabilization technique alongside a simplified image enhancement model.
- Score: 12.994898879803642
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The complex marine environment exacerbates the challenges of object detection manifold. Marine trash endangers the aquatic ecosystem, presenting a persistent challenge. Accurate detection of marine deposits is crucial for mitigating this harm. Our work addresses underwater object detection by enhancing image quality and evaluating detection methods. We use Detectron2's backbone with various base models and configurations for this task. We propose a novel channel stabilization technique alongside a simplified image enhancement model to reduce haze and color cast in training images, improving multi-scale object detection. Following image processing, we test different Detectron2 backbones for optimal detection accuracy. Additionally, we apply a sharpening filter with augmentation techniques to highlight object profiles for easier recognition. Results are demonstrated on the TrashCan Dataset, both instance and material versions. The best-performing backbone method incorporates our channel stabilization and augmentation techniques. We also compare our Detectron2 detection results with the Deformable Transformer. In the instance version of TrashCan 1.0, our method achieves a 9.53% absolute increase in average precision for small objects and a 7% absolute gain in bounding box detection compared to the baseline. The code will be available on Code: https://github.com/aliman80/Underwater- Object-Detection-via-Channel-Stablization
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - GAMMA: Generative Augmentation for Attentive Marine Debris Detection [0.0]
We propose an efficient and generative augmentation approach to solve the inadequacy concern of underwater debris data for visual detection.
We use cycleGAN as a data augmentation technique to convert openly available, abundant data of terrestrial plastic to underwater-style images.
We also propose a novel architecture for underwater debris detection using an attention mechanism.
arXiv Detail & Related papers (2022-12-07T16:30:51Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Comprehensive Analysis of the Object Detection Pipeline on UAVs [16.071349046409885]
We first empirically analyze the influence of seven parameters (quantization, compression, resolution, color model, image distortion, gamma correction, additional channels) in remote sensing applications.
We show that not all parameters have an equal impact on detection accuracy and data throughput, and that by using a suitable compromise between parameters we are able to improve detection accuracy for lightweight object detection models.
arXiv Detail & Related papers (2022-03-01T09:30:01Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
This work augments the fine-tuning stage for object detectors by exploring adversarial examples.
Our approach boosts the performance of state-of-the-art EfficientDets by +1.1 mAP on the object detection benchmark.
arXiv Detail & Related papers (2021-03-23T19:45:26Z) - SWIPENET: Object detection in noisy underwater images [41.35601054297707]
We propose a novel Sample-WeIghted hyPEr Network (SWIPENET), and a robust training paradigm named Curriculum Multi-Class Adaboost (CMA) to address these two problems.
The backbone of SWIPENET produces multiple high resolution and semantic-rich Hyper Feature Maps, which significantly improve small object detection.
Inspired by the human education process that drives the learning from easy to hard concepts, we here propose the CMA training paradigm that first trains a clean detector which is free from the influence of noisy data.
arXiv Detail & Related papers (2020-10-19T16:41:20Z) - Underwater object detection using Invert Multi-Class Adaboost with deep
learning [37.14538666012363]
We propose a novel neural network architecture, namely Sample-WeIghted hyPEr Network (SWIPENet), for small object detection.
We show that the proposed SWIPENet+IMA framework achieves better performance in detection accuracy against several state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-23T15:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.