A Robotics-Inspired Scanpath Model Reveals the Importance of Uncertainty and Semantic Object Cues for Gaze Guidance in Dynamic Scenes
- URL: http://arxiv.org/abs/2408.01322v1
- Date: Fri, 2 Aug 2024 15:20:34 GMT
- Title: A Robotics-Inspired Scanpath Model Reveals the Importance of Uncertainty and Semantic Object Cues for Gaze Guidance in Dynamic Scenes
- Authors: Vito Mengers, Nicolas Roth, Oliver Brock, Klaus Obermayer, Martin Rolfs,
- Abstract summary: We present a mechanistic model that simulates object segmentation and gaze behavior for dynamic real-world scenes.
Our model uses the current scene segmentation for object-based saccadic decision-making while using the foveated object to refine its scene segmentation.
We show that our model's modular design allows for extensions, such as incorporating saccadic momentum or pre-saccadic attention.
- Score: 8.64158103104882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How we perceive objects around us depends on what we actively attend to, yet our eye movements depend on the perceived objects. Still, object segmentation and gaze behavior are typically treated as two independent processes. Drawing on an information processing pattern from robotics, we present a mechanistic model that simulates these processes for dynamic real-world scenes. Our image-computable model uses the current scene segmentation for object-based saccadic decision-making while using the foveated object to refine its scene segmentation recursively. To model this refinement, we use a Bayesian filter, which also provides an uncertainty estimate for the segmentation that we use to guide active scene exploration. We demonstrate that this model closely resembles observers' free viewing behavior, measured by scanpath statistics, including foveation duration and saccade amplitude distributions used for parameter fitting and higher-level statistics not used for fitting. These include how object detections, inspections, and returns are balanced and a delay of returning saccades without an explicit implementation of such temporal inhibition of return. Extensive simulations and ablation studies show that uncertainty promotes balanced exploration and that semantic object cues are crucial to form the perceptual units used in object-based attention. Moreover, we show how our model's modular design allows for extensions, such as incorporating saccadic momentum or pre-saccadic attention, to further align its output with human scanpaths.
Related papers
- Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered.
Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics.
We present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds.
arXiv Detail & Related papers (2024-09-24T17:59:56Z) - DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
Our approach formulates the union of the two tasks as a trajectory refinement problem.
To tackle this unified task, we design a refinement transformer that infers the presence, pose, and multi-modal future behaviors of objects.
In our experiments, we observe that ourmodel outperforms the state-of-the-art on Argoverse 2 Sensor and Open dataset.
arXiv Detail & Related papers (2024-06-06T18:12:04Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - Active Sensing with Predictive Coding and Uncertainty Minimization [0.0]
We present an end-to-end procedure for embodied exploration inspired by two biological computations.
We first demonstrate our approach in a maze navigation task and show that it can discover the underlying transition distributions and spatial features of the environment.
We show that our model builds unsupervised representations through exploration that allow it to efficiently categorize visual scenes.
arXiv Detail & Related papers (2023-07-02T21:14:49Z) - Spatio-Temporal Relation Learning for Video Anomaly Detection [35.59510027883497]
Anomaly identification is highly dependent on the relationship between the object and the scene.
In this paper, we propose a Spatial-Temporal Relation Learning framework to tackle the video anomaly detection task.
Experiments are conducted on three public datasets, and the superior performance over the state-of-the-art methods demonstrates the effectiveness of our method.
arXiv Detail & Related papers (2022-09-27T02:19:31Z) - Neural Motion Fields: Encoding Grasp Trajectories as Implicit Value
Functions [65.84090965167535]
We present Neural Motion Fields, a novel object representation which encodes both object point clouds and the relative task trajectories as an implicit value function parameterized by a neural network.
This object-centric representation models a continuous distribution over the SE(3) space and allows us to perform grasping reactively by leveraging sampling-based MPC to optimize this value function.
arXiv Detail & Related papers (2022-06-29T18:47:05Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - A modular framework for object-based saccadic decisions in dynamic
scenes [5.7047887413125276]
We present a new model for simulating human eye-movement behavior in dynamic real-world scenes.
We model this active scene exploration as a sequential decision making process.
For each possible choice, the model integrates evidence over time and a decision (saccadic eye movement) is triggered as soon as evidence crosses a decision threshold.
arXiv Detail & Related papers (2021-06-10T22:28:45Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - Unsupervised Video Decomposition using Spatio-temporal Iterative
Inference [31.97227651679233]
Multi-object scene decomposition is a fast-emerging problem in learning.
We show that our model has a high accuracy even without color information.
We demonstrate the decomposition, segmentation prediction capabilities of our model and show that it outperforms the state-of-the-art on several benchmark datasets.
arXiv Detail & Related papers (2020-06-25T22:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.