論文の概要: MolTRES: Improving Chemical Language Representation Learning for Molecular Property Prediction
- arxiv url: http://arxiv.org/abs/2408.01426v1
- Date: Tue, 9 Jul 2024 01:14:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 05:08:48.020631
- Title: MolTRES: Improving Chemical Language Representation Learning for Molecular Property Prediction
- Title(参考訳): MolTRES:分子特性予測のための化学言語表現学習の改善
- Authors: Jun-Hyung Park, Yeachan Kim, Mingyu Lee, Hyuntae Park, SangKeun Lee,
- Abstract要約: MolTRESは化学言語表現学習フレームワークである。
ジェネレータと識別器のトレーニングが組み込まれており、より難しい例からモデルを学習することができる。
我々のモデルは、一般的な分子特性予測タスクにおける既存の最先端モデルよりも優れています。
- 参考スコア(独自算出の注目度): 14.353313239109337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chemical representation learning has gained increasing interest due to the limited availability of supervised data in fields such as drug and materials design. This interest particularly extends to chemical language representation learning, which involves pre-training Transformers on SMILES sequences -- textual descriptors of molecules. Despite its success in molecular property prediction, current practices often lead to overfitting and limited scalability due to early convergence. In this paper, we introduce a novel chemical language representation learning framework, called MolTRES, to address these issues. MolTRES incorporates generator-discriminator training, allowing the model to learn from more challenging examples that require structural understanding. In addition, we enrich molecular representations by transferring knowledge from scientific literature by integrating external materials embedding. Experimental results show that our model outperforms existing state-of-the-art models on popular molecular property prediction tasks.
- Abstract(参考訳): 化学表現学習は、薬物や材料設計などの分野における教師付きデータの利用が限られているため、関心が高まっている。
この関心は特に化学言語表現学習にまで広がり、SMILES配列上のトランスフォーマー -- 分子のテキスト記述子 -- を事前学習する。
分子特性予測の成功にもかかわらず、現在のプラクティスはしばしば初期の収束によって過度に適合し、スケーラビリティが制限される。
本稿では,これらの問題に対処するために,MolTRESと呼ばれる新しい化学言語表現学習フレームワークを提案する。
MolTRESはジェネレータと識別器のトレーニングを取り入れており、構造的理解を必要とするより難しい例からモデルを学習することができる。
さらに, 外部材料を埋め込むことにより, 科学文献から知識を伝達することで分子表現を充実させる。
実験結果から,本モデルは分子特性予測タスクにおける既存の最先端モデルよりも優れていることがわかった。
関連論文リスト
- Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [65.31067204558536]
本稿では,学生に類似した多制約分子生成大言語モデルTSMMGを紹介する。
TSMMGを訓練するために、これらの「教師」から分子知識を抽出し、大量のテキスト-分子対を構築する。
我々は,TSMMGが複雑で自然言語で記述された特性を満たす分子を生成できることを実験的に明らかにした。
論文 参考訳(メタデータ) (2024-03-20T02:15:55Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Interactive Molecular Discovery with Natural Language [69.89287960545903]
対象分子を記述・編集するための自然言語を用いた対話型分子設計を提案する。
この課題をより良くするために、実験プロパティ情報を注入することによって強化された知識的で汎用的な生成事前学習モデルChatMolを設計する。
論文 参考訳(メタデータ) (2023-06-21T02:05:48Z) - MolCAP: Molecular Chemical reActivity pretraining and
prompted-finetuning enhanced molecular representation learning [3.179128580341411]
MolCAPは、化学反応性(IMR)知識に基づくグラフ事前学習トランスフォーマーであり、微調整を誘導する。
MolCAPによって推進され、基礎的なグラフニューラルネットワークでさえ、以前のモデルを上回る驚くべきパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2023-06-13T13:48:06Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
大規模言語モデル(LLM)は、様々なクロスモーダルタスクにおいて顕著なパフォーマンスを示している。
本研究では,分子カプセル翻訳のためのインコンテキストFew-Shot Molecule Learningパラダイムを提案する。
分子理解とテキストベースの分子生成を含む分子キャプション翻訳におけるMollReGPTの有効性を評価する。
論文 参考訳(メタデータ) (2023-06-11T08:16:25Z) - MolXPT: Wrapping Molecules with Text for Generative Pre-training [141.0924452870112]
MolXPTは、テキストでラップされたSMILESで事前訓練されたテキストと分子の統一言語モデルである。
MolXPT は MoleculeNet 上での分子特性予測の強いベースラインを上回ります。
論文 参考訳(メタデータ) (2023-05-18T03:58:19Z) - Domain-Agnostic Molecular Generation with Chemical Feedback [44.063584808910896]
MolGenは、分子生成に特化した事前訓練された分子言語モデルである。
1億以上の分子SELFIESを再構成することで構造的および文法的な洞察を内部化する。
我々の化学フィードバックパラダイムは、モデルを分子幻覚から遠ざけ、モデルの推定確率と実世界の化学的嗜好との整合性を確保する。
論文 参考訳(メタデータ) (2023-01-26T17:52:56Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular
Property Prediction [13.55018269009361]
我々は、分子グラフ表現学習のための新しい自己教師付き学習フレームワーク、KPGT(Knowledge-guided Pre-training of Graph Transformer)を紹介する。
KPGTは、いくつかの分子特性予測タスクにおける最先端の手法よりも優れた性能を提供することができる。
論文 参考訳(メタデータ) (2022-06-02T08:22:14Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
本稿では,MoLFormerと呼ばれる効率的なトランスフォーマーエンコーダモデルのトレーニングにより得られた分子埋め込みについて述べる。
実験の結果,グラフベースおよび指紋ベースによる教師付き学習ベースラインと比較して,学習された分子表現が競合的に機能することが確認された。
論文 参考訳(メタデータ) (2021-06-17T14:33:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。