Gradient flow in parameter space is equivalent to linear interpolation in output space
- URL: http://arxiv.org/abs/2408.01517v2
- Date: Wed, 04 Jun 2025 22:45:16 GMT
- Title: Gradient flow in parameter space is equivalent to linear interpolation in output space
- Authors: Thomas Chen, Patrícia Muñoz Ewald,
- Abstract summary: We prove that the standard flow in parameter space that underlies many training algorithms in deep learning can be continuously deformed into an adapted gradient flow.<n>For the $L2$ loss, if the Jacobian of the outputs with respect to the parameters is full rank, then the time variable can be reparametrized so that the resulting flow is simply linear.<n>For the cross-entropy loss, under the same rank condition and assuming the labels have positive components, we derive an explicit formula for the unique global minimum.
- Score: 1.189367612437469
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We prove that the standard gradient flow in parameter space that underlies many training algorithms in deep learning can be continuously deformed into an adapted gradient flow which yields (constrained) Euclidean gradient flow in output space. Moreover, for the $L^{2}$ loss, if the Jacobian of the outputs with respect to the parameters is full rank (for fixed training data), then the time variable can be reparametrized so that the resulting flow is simply linear interpolation, and a global minimum can be achieved. For the cross-entropy loss, under the same rank condition and assuming the labels have positive components, we derive an explicit formula for the unique global minimum.
Related papers
- A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Global $\mathcal{L}^2$ minimization at uniform exponential rate via geometrically adapted gradient descent in Deep Learning [1.4050802766699084]
We consider the scenario of supervised learning in Deep Learning (DL) networks.
We choose the gradient flow with respect to the Euclidean metric in the output layer of the DL network.
arXiv Detail & Related papers (2023-11-27T02:12:02Z) - Over-the-Air Computation Aided Federated Learning with the Aggregation
of Normalized Gradient [12.692064367193934]
Over-the-air computation is a communication-efficient solution for federated learning (FL)
In such a system, iterative procedure of private loss function is updated, and then transmitted by every mobile device.
To circumvent this problem, we propose to turn local gradient to be normalized one before amplifying it.
arXiv Detail & Related papers (2023-08-17T16:15:47Z) - Aiming towards the minimizers: fast convergence of SGD for
overparametrized problems [25.077446336619378]
We propose a regularity regime which endows the gradient method with the same worst-case complexity as the gradient method.
All existing guarantees require the gradient method to take small steps, thereby resulting in a much slower linear rate of convergence.
We demonstrate that our condition holds when training sufficiently wide feedforward neural networks with a linear output layer.
arXiv Detail & Related papers (2023-06-05T05:21:01Z) - Implicit Bias of Gradient Descent for Logistic Regression at the Edge of
Stability [69.01076284478151]
In machine learning optimization, gradient descent (GD) often operates at the edge of stability (EoS)
This paper studies the convergence and implicit bias of constant-stepsize GD for logistic regression on linearly separable data in the EoS regime.
arXiv Detail & Related papers (2023-05-19T16:24:47Z) - Dynamic Flows on Curved Space Generated by Labeled Data [17.621847430986854]
We propose a gradient flow method to generate new samples close to a dataset of interest.
We show that our method can improve the accuracy of classification models in transfer learning settings.
arXiv Detail & Related papers (2023-01-31T19:53:01Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - Continuous-Time Meta-Learning with Forward Mode Differentiation [65.26189016950343]
We introduce Continuous Meta-Learning (COMLN), a meta-learning algorithm where adaptation follows the dynamics of a gradient vector field.
Treating the learning process as an ODE offers the notable advantage that the length of the trajectory is now continuous.
We show empirically its efficiency in terms of runtime and memory usage, and we illustrate its effectiveness on a range of few-shot image classification problems.
arXiv Detail & Related papers (2022-03-02T22:35:58Z) - Spatio-Temporal Variational Gaussian Processes [26.60276485130467]
We introduce a scalable approach to Gaussian process inference that combinestemporal-temporal filtering with natural variational inference.
We derive a sparse approximation that constructs a state-space model over a reduced set of inducing points.
We show that for separable Markov kernels the full sparse cases recover exactly the standard variational GP.
arXiv Detail & Related papers (2021-11-02T16:53:31Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Learning Linearized Assignment Flows for Image Labeling [70.540936204654]
We introduce a novel algorithm for estimating optimal parameters of linearized assignment flows for image labeling.
We show how to efficiently evaluate this formula using a Krylov subspace and a low-rank approximation.
arXiv Detail & Related papers (2021-08-02T13:38:09Z) - Channel-Directed Gradients for Optimization of Convolutional Neural
Networks [50.34913837546743]
We introduce optimization methods for convolutional neural networks that can be used to improve existing gradient-based optimization in terms of generalization error.
We show that defining the gradients along the output channel direction leads to a performance boost, while other directions can be detrimental.
arXiv Detail & Related papers (2020-08-25T00:44:09Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z) - The Implicit Bias of Gradient Descent on Separable Data [44.98410310356165]
We show the predictor converges to the direction of the max-margin (hard margin SVM) solution.
This can help explain the benefit of continuing to optimize the logistic or cross-entropy loss even after the training error is zero.
arXiv Detail & Related papers (2017-10-27T21:47:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.