An Efficient Real-Time Object Detection Framework on Resource-Constricted Hardware Devices via Software and Hardware Co-design
- URL: http://arxiv.org/abs/2408.01534v2
- Date: Tue, 20 Aug 2024 04:15:50 GMT
- Title: An Efficient Real-Time Object Detection Framework on Resource-Constricted Hardware Devices via Software and Hardware Co-design
- Authors: Mingshuo Liu, Shiyi Luo, Kevin Han, Bo Yuan, Ronald F. DeMara, Yu Bai,
- Abstract summary: This paper proposes an efficient real-time object detection framework on resource-constrained hardware devices through hardware and software co-design.
Results show that the proposed method can significantly reduce the model size and improve the execution time.
- Score: 11.857890662690448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fast development of object detection techniques has attracted attention to developing efficient Deep Neural Networks (DNNs). However, the current state-of-the-art DNN models can not provide a balanced solution among accuracy, speed, and model size. This paper proposes an efficient real-time object detection framework on resource-constrained hardware devices through hardware and software co-design. The Tensor Train (TT) decomposition is proposed for compressing the YOLOv5 model. By unitizing the unique characteristics given by the TT decomposition, we develop an efficient hardware accelerator based on FPGA devices. Experimental results show that the proposed method can significantly reduce the model size and improve the execution time.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Automatic Generation of Fast and Accurate Performance Models for Deep Neural Network Accelerators [33.18173790144853]
We present an automated generation approach for fast performance models to accurately estimate the latency of a Deep Neural Networks (DNNs)
We modeled representative DNN accelerators such as Gemmini, UltraTrail, Plasticine-derived, and a parameterizable systolic array.
We evaluate only 154 loop kernel iterations to estimate the performance for 4.19 billion instructions achieving a significant speedup.
arXiv Detail & Related papers (2024-09-13T07:27:55Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - SATAY: A Streaming Architecture Toolflow for Accelerating YOLO Models on
FPGA Devices [48.47320494918925]
This work tackles the challenges of deploying stateof-the-art object detection models onto FPGA devices for ultralow latency applications.
We employ a streaming architecture design for our YOLO accelerators, implementing the complete model on-chip in a deeply pipelined fashion.
We introduce novel hardware components to support the operations of YOLO models in a dataflow manner, and off-chip memory buffering to address the limited on-chip memory resources.
arXiv Detail & Related papers (2023-09-04T13:15:01Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices [58.62801151916888]
We introduce a new sparsity dimension, namely pattern-based sparsity that comprises pattern and connectivity sparsity, and becoming both highly accurate and hardware friendly.
Our approach on the new pattern-based sparsity naturally fits into compiler optimization for highly efficient DNN execution on mobile platforms.
arXiv Detail & Related papers (2020-01-20T16:17:36Z) - Lightweight Residual Densely Connected Convolutional Neural Network [18.310331378001397]
The lightweight residual densely connected blocks are proposed to guaranty the deep supervision, efficient gradient flow, and feature reuse abilities of convolutional neural network.
The proposed method decreases the cost of training and inference processes without using any special hardware-software equipment.
arXiv Detail & Related papers (2020-01-02T17:15:32Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.