CREST: An Efficient Conjointly-trained Spike-driven Framework for Event-based Object Detection Exploiting Spatiotemporal Dynamics
- URL: http://arxiv.org/abs/2412.12525v3
- Date: Sun, 19 Jan 2025 08:06:33 GMT
- Title: CREST: An Efficient Conjointly-trained Spike-driven Framework for Event-based Object Detection Exploiting Spatiotemporal Dynamics
- Authors: Ruixin Mao, Aoyu Shen, Lin Tang, Jun Zhou,
- Abstract summary: Spiking neural networks (SNNs) are promising for event-based object recognition and detection.
Existing SNN frameworks often fail to handle multi-scaletemporal features, leading to increased data redundancy and reduced accuracy.
We propose CREST, a novel conjointly-trained spike-driven framework to exploit event-based object detection.
- Score: 7.696109414724968
- License:
- Abstract: Event-based cameras feature high temporal resolution, wide dynamic range, and low power consumption, which is ideal for high-speed and low-light object detection. Spiking neural networks (SNNs) are promising for event-based object recognition and detection due to their spiking nature but lack efficient training methods, leading to gradient vanishing and high computational complexity, especially in deep SNNs. Additionally, existing SNN frameworks often fail to effectively handle multi-scale spatiotemporal features, leading to increased data redundancy and reduced accuracy. To address these issues, we propose CREST, a novel conjointly-trained spike-driven framework to exploit spatiotemporal dynamics in event-based object detection. We introduce the conjoint learning rule to accelerate SNN learning and alleviate gradient vanishing. It also supports dual operation modes for efficient and flexible implementation on different hardware types. Additionally, CREST features a fully spike-driven framework with a multi-scale spatiotemporal event integrator (MESTOR) and a spatiotemporal-IoU (ST-IoU) loss. Our approach achieves superior object recognition & detection performance and up to 100X energy efficiency compared with state-of-the-art SNN algorithms on three datasets, providing an efficient solution for event-based object detection algorithms suitable for SNN hardware implementation.
Related papers
- RE-POSE: Synergizing Reinforcement Learning-Based Partitioning and Offloading for Edge Object Detection [3.2805151494259563]
Real-time object detection on edge devices presents significant challenges due to their limited computational resources and the high demands of deep neural network (DNN)-based detection models.
This paper introduces RE-POSE, a framework designed to optimize the accuracy-latency trade-off in resource-constrained edge environments.
arXiv Detail & Related papers (2025-01-16T10:56:45Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
Multiple object tracking is a critical task in autonomous driving.
As tracking accuracy improves, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency.
In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy.
arXiv Detail & Related papers (2024-03-23T04:18:49Z) - SFOD: Spiking Fusion Object Detector [10.888008544975662]
Spiking Fusion Object Detector (SFOD) is a simple and efficient approach to SNN-based object detection.
We design a Spiking Fusion Module, achieving the first-time fusion of feature maps from different scales in SNNs applied to event cameras.
We establish state-of-the-art classification results based on SNNs, achieving 93.7% accuracy on the NCAR dataset.
arXiv Detail & Related papers (2024-03-22T13:24:50Z) - EAS-SNN: End-to-End Adaptive Sampling and Representation for Event-based Detection with Recurrent Spiking Neural Networks [14.046487518350792]
Spiking Neural Networks (SNNs) operate on an event-driven through sparse spike communication.
We introduce Residual Potential Dropout (RPD) and Spike-Aware Training (SAT) to regulate potential distribution.
Our method yields a 4.4% mAP improvement on the Gen1 dataset, while requiring 38% fewer parameters and only three time steps.
arXiv Detail & Related papers (2024-03-19T09:34:11Z) - Highly Efficient SNNs for High-speed Object Detection [7.3074002563489024]
Experimental results show that our efficient SNN can achieve 118X speedup on GPU with only 1.5MB parameters for object detection tasks.
We further verify our SNN on FPGA platform and the proposed model can achieve 800+FPS object detection with extremely low latency.
arXiv Detail & Related papers (2023-09-27T10:31:12Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Automotive Object Detection via Learning Sparse Events by Spiking Neurons [20.930277906912394]
Spiking Neural Networks (SNNs) provide a temporal representation that is inherently aligned with event-based data.
We present a specialized spiking feature pyramid network (SpikeFPN) optimized for automotive event-based object detection.
arXiv Detail & Related papers (2023-07-24T15:47:21Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.