Momentum Capture and Prediction System Based on Wimbledon Open2023 Tournament Data
- URL: http://arxiv.org/abs/2408.01544v1
- Date: Fri, 2 Aug 2024 19:14:49 GMT
- Title: Momentum Capture and Prediction System Based on Wimbledon Open2023 Tournament Data
- Authors: Chang Liu, Tongyuan Yang, Yan Zhao,
- Abstract summary: This study introduces an evaluation model that synergizes the Entropy Weight Method (EWM) and Gray Relation Analysis (GRA) to quantify momentum's impact on match outcomes.
The model's ability to identify the influence of specific factors on match dynamics, as bilateral distance run during points, demonstrates its prowess.
- Score: 4.733690536516437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a hidden energy in tennis, which cannot be seen or touched. It is the force that controls the flow of the game and is present in all types of matches. This mysterious force is Momentum. This study introduces an evaluation model that synergizes the Entropy Weight Method (EWM) and Gray Relation Analysis (GRA) to quantify momentum's impact on match outcomes. Empirical validation was conducted through Mann-Whitney U and Kolmogorov-Smirnov tests, which yielded p values of 0.0043 and 0.00128,respectively. These results underscore the non-random association between momentum shifts and match outcomes, highlighting the critical role of momentum in tennis. Otherwise, our investigation foucus is the creation of a predictive model that combines the advanced machine learning algorithm XGBoost with the SHAP framework. This model enables precise predictions of match swings with exceptional accuracy (0.999013 for multiple matches and 0.992738 for finals). The model's ability to identify the influence of specific factors on match dynamics,such as bilateral distance run during points, demonstrates its prowess.The model's generalizability was thoroughly evaluated using datasets from the four Grand Slam tournaments. The results demonstrate its remarkable adaptability to different match scenarios,despite minor variations in predictive accuracy. It offers strategic insights that can help players effectively respond to opponents' shifts in momentum,enhancing their competitive edge.
Related papers
- Lasso Ridge based XGBoost and Deep_LSTM Help Tennis Players Perform better [1.6016817180824583]
We develop a sliding-window-based scoring model to assess player performance and quantify momentum effects.
We propose a Derivative of the winning rate algorithm to quantify game fluctuation, employing an LSTM_Deep model to pre-dict fluctuation scores.
Our findings provide valuable in-sights into momentum dynamics and game fluctuation, offering implications for sports analytics and player training strategies.
arXiv Detail & Related papers (2024-05-11T15:02:08Z) - Capturing Momentum: Tennis Match Analysis Using Machine Learning and Time Series Theory [0.9449650062296823]
This paper represents an analysis on the momentum of tennis match.
We First use hidden markov models to predict the momentum which is defined as the performance of players.
Then we use Xgboost to prove the significance of momentum.
arXiv Detail & Related papers (2024-04-20T07:11:06Z) - MLFEF: Machine Learning Fusion Model with Empirical Formula to Explore
the Momentum in Competitive Sports [2.4048240311299725]
We build two models, one is to build a model based on data-driven, and the other is to build a model based on empirical formulas.
For the data-driven model, we first found a large amount of public data including public data on tennis matches in the past five years and personal information data of players.
For the mechanism analysis model, important features were selected based on the suggestions of many tennis players and enthusiasts.
arXiv Detail & Related papers (2024-02-19T14:02:13Z) - ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing
Forecasting Models in Badminton [52.21869064818728]
Deep learning approaches for player tactic forecasting in badminton show promising performance partially attributed to effective reasoning about rally-player interactions.
We propose a turn-based feature attribution approach, ShuttleSHAP, for analyzing forecasting models in badminton based on variants of Shapley values.
arXiv Detail & Related papers (2023-12-18T05:37:51Z) - Perturbation-Invariant Adversarial Training for Neural Ranking Models:
Improving the Effectiveness-Robustness Trade-Off [107.35833747750446]
adversarial examples can be crafted by adding imperceptible perturbations to legitimate documents.
This vulnerability raises significant concerns about their reliability and hinders the widespread deployment of NRMs.
In this study, we establish theoretical guarantees regarding the effectiveness-robustness trade-off in NRMs.
arXiv Detail & Related papers (2023-12-16T05:38:39Z) - Bayes-xG: Player and Position Correction on Expected Goals (xG) using
Bayesian Hierarchical Approach [55.2480439325792]
This study investigates the influence of player or positional factors in predicting a shot resulting in a goal, measured by the expected goals (xG) metric.
It uses publicly available data from StatsBomb to analyse 10,000 shots from the English Premier League.
The study extends its analysis to data from Spain's La Liga and Germany's Bundesliga, yielding comparable results.
arXiv Detail & Related papers (2023-11-22T21:54:02Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.
We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.
By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - Supervised Learning for Table Tennis Match Prediction [2.7835697868135902]
This paper proposes the use of machine learning to predict the outcome of table tennis single matches.
We use player and match statistics as features and evaluate their relative importance in an ablation study.
The results can serve as a baseline for future table tennis prediction models, and can feed back to prediction research in similar ball sports.
arXiv Detail & Related papers (2023-03-28T17:42:13Z) - Machine Learning in Sports: A Case Study on Using Explainable Models for
Predicting Outcomes of Volleyball Matches [0.0]
This paper explores a two-phased Explainable Artificial Intelligence(XAI) approach to predict outcomes of matches in the Brazilian volleyball League (SuperLiga)
In the first phase, we directly use the interpretable rule-based ML models that provide a global understanding of the model's behaviors.
In the second phase, we construct non-linear models such as Support Vector Machine (SVM) and Deep Neural Network (DNN) to obtain predictive performance on the volleyball matches' outcomes.
arXiv Detail & Related papers (2022-06-18T18:09:15Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - Interpretable Real-Time Win Prediction for Honor of Kings, a Popular
Mobile MOBA Esport [51.20042288437171]
We propose a Two-Stage Spatial-Temporal Network (TSSTN) that can provide accurate real-time win predictions.
Experiment results and applications in real-world live streaming scenarios showed that the proposed TSSTN model is effective both in prediction accuracy and interpretability.
arXiv Detail & Related papers (2020-08-14T12:00:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.