Lasso Ridge based XGBoost and Deep_LSTM Help Tennis Players Perform better
- URL: http://arxiv.org/abs/2405.07030v1
- Date: Sat, 11 May 2024 15:02:08 GMT
- Title: Lasso Ridge based XGBoost and Deep_LSTM Help Tennis Players Perform better
- Authors: Wankang Zhai, Yuhan Wang,
- Abstract summary: We develop a sliding-window-based scoring model to assess player performance and quantify momentum effects.
We propose a Derivative of the winning rate algorithm to quantify game fluctuation, employing an LSTM_Deep model to pre-dict fluctuation scores.
Our findings provide valuable in-sights into momentum dynamics and game fluctuation, offering implications for sports analytics and player training strategies.
- Score: 1.6016817180824583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the dynamics of momentum and game fluctuation in tennis matches is cru-cial for predicting match outcomes and enhancing player performance. In this study, we present a comprehensive analysis of these factors using a dataset from the 2023 Wimbledon final. Ini-tially, we develop a sliding-window-based scoring model to assess player performance, ac-counting for the influence of serving dominance through a serve decay factor. Additionally, we introduce a novel approach, Lasso-Ridge-based XGBoost, to quantify momentum effects, lev-eraging the predictive power of XGBoost while mitigating overfitting through regularization. Through experimentation, we achieve an accuracy of 94% in predicting match outcomes, iden-tifying key factors influencing winning rates. Subsequently, we propose a Derivative of the winning rate algorithm to quantify game fluctuation, employing an LSTM_Deep model to pre-dict fluctuation scores. Our model effectively captures temporal correlations in momentum fea-tures, yielding mean squared errors ranging from 0.036 to 0.064. Furthermore, we explore me-ta-learning using MAML to transfer our model to predict outcomes in ping-pong matches, though results indicate a comparative performance decline. Our findings provide valuable in-sights into momentum dynamics and game fluctuation, offering implications for sports analytics and player training strategies.
Related papers
- TCDformer-based Momentum Transfer Model for Long-term Sports Prediction [6.209644981642842]
This paper proposes TM2, a TCDformer-based Momentum Transfer Model for long-term sports prediction.
On the 2023 Wimbledon men's tournament datasets, TM2 significantly surpasses existing sports prediction models in terms of performance.
arXiv Detail & Related papers (2024-09-16T11:10:54Z) - Momentum Capture and Prediction System Based on Wimbledon Open2023 Tournament Data [4.733690536516437]
This study introduces an evaluation model that synergizes the Entropy Weight Method (EWM) and Gray Relation Analysis (GRA) to quantify momentum's impact on match outcomes.
The model's ability to identify the influence of specific factors on match dynamics, as bilateral distance run during points, demonstrates its prowess.
arXiv Detail & Related papers (2024-08-02T19:14:49Z) - Capturing Momentum: Tennis Match Analysis Using Machine Learning and Time Series Theory [0.9449650062296823]
This paper represents an analysis on the momentum of tennis match.
We First use hidden markov models to predict the momentum which is defined as the performance of players.
Then we use Xgboost to prove the significance of momentum.
arXiv Detail & Related papers (2024-04-20T07:11:06Z) - ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing
Forecasting Models in Badminton [52.21869064818728]
Deep learning approaches for player tactic forecasting in badminton show promising performance partially attributed to effective reasoning about rally-player interactions.
We propose a turn-based feature attribution approach, ShuttleSHAP, for analyzing forecasting models in badminton based on variants of Shapley values.
arXiv Detail & Related papers (2023-12-18T05:37:51Z) - Bayes-xG: Player and Position Correction on Expected Goals (xG) using
Bayesian Hierarchical Approach [55.2480439325792]
This study investigates the influence of player or positional factors in predicting a shot resulting in a goal, measured by the expected goals (xG) metric.
It uses publicly available data from StatsBomb to analyse 10,000 shots from the English Premier League.
The study extends its analysis to data from Spain's La Liga and Germany's Bundesliga, yielding comparable results.
arXiv Detail & Related papers (2023-11-22T21:54:02Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
Humans possess the ability to draw on past experiences explicitly when learning new tasks.
We propose the Self-Reference (SR) approach, an add-on module explicitly designed to leverage historical information.
Our approach achieves state-of-the-art results in terms of Interquartile Mean (IQM) performance and Optimality Gap reduction on the Unsupervised Reinforcement Learning Benchmark.
arXiv Detail & Related papers (2023-11-16T09:07:34Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - League of Legends: Real-Time Result Prediction [0.0]
This paper presents a study on the prediction of outcomes in matches of the electronic game League of Legends (LoL) using machine learning techniques.
A variety of models were evaluated and the results were encouraging.
This study contributes to the field of machine learning applied to electronic games, providing valuable insights into real-time prediction in League of Legends.
arXiv Detail & Related papers (2023-09-02T02:01:51Z) - Who You Play Affects How You Play: Predicting Sports Performance Using
Graph Attention Networks With Temporal Convolution [29.478765505215538]
This study presents a novel deep learning method, called GATv2-GCN, for predicting player performance in sports.
We use a graph attention network to capture the attention that each player pays to each other, allowing for more accurate modeling.
We evaluate the performance of our model using real-world sports data, demonstrating its effectiveness in predicting player performance.
arXiv Detail & Related papers (2023-03-29T14:48:51Z) - FL Games: A federated learning framework for distribution shifts [71.98708418753786]
Federated learning aims to train predictive models for data that is distributed across clients, under the orchestration of a server.
We propose FL Games, a game-theoretic framework for federated learning for learning causal features that are invariant across clients.
arXiv Detail & Related papers (2022-05-23T07:51:45Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.