Deep Learning Framework for History Matching CO2 Storage with 4D Seismic and Monitoring Well Data
- URL: http://arxiv.org/abs/2408.01575v1
- Date: Fri, 2 Aug 2024 21:14:13 GMT
- Title: Deep Learning Framework for History Matching CO2 Storage with 4D Seismic and Monitoring Well Data
- Authors: Nanzhe Wang, Louis J. Durlofsky,
- Abstract summary: Geological carbon storage entails the injection of megatonnes of supercritical CO2 into subsurface formations.
This paper introduces a history matching strategy that enables the calibration of formation properties based on early-time observations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Geological carbon storage entails the injection of megatonnes of supercritical CO2 into subsurface formations. The properties of these formations are usually highly uncertain, which makes design and optimization of large-scale storage operations challenging. In this paper we introduce a history matching strategy that enables the calibration of formation properties based on early-time observations. Early-time assessments are essential to assure the operation is performing as planned. Our framework involves two fit-for-purpose deep learning surrogate models that provide predictions for in-situ monitoring well data and interpreted time-lapse (4D) seismic saturation data. These two types of data are at very different scales of resolution, so it is appropriate to construct separate, specialized deep learning networks for their prediction. This approach results in a workflow that is more straightforward to design and more efficient to train than a single surrogate that provides global high-fidelity predictions. The deep learning models are integrated into a hierarchical Markov chain Monte Carlo (MCMC) history matching procedure. History matching is performed on a synthetic case with and without 4D seismic data, which allows us to quantify the impact of 4D seismic on uncertainty reduction. The use of both data types is shown to provide substantial uncertainty reduction in key geomodel parameters and to enable accurate predictions of CO2 plume dynamics. The overall history matching framework developed in this study represents an efficient way to integrate multiple data types and to assess the impact of each on uncertainty reduction and performance predictions.
Related papers
- Accelerated training of deep learning surrogate models for surface displacement and flow, with application to MCMC-based history matching of CO2 storage operations [0.0]
We introduce a new surrogate modeling framework to predict CO2 saturation, pressure and surface displacement for use in the history matching of carbon storage operations.
Training here involves a large number of inexpensive flow-only simulations combined with a much smaller number of coupled runs.
arXiv Detail & Related papers (2024-08-20T10:31:52Z) - RGM: A Robust Generalizable Matching Model [49.60975442871967]
We propose a deep model for sparse and dense matching, termed RGM (Robust Generalist Matching)
To narrow the gap between synthetic training samples and real-world scenarios, we build a new, large-scale dataset with sparse correspondence ground truth.
We are able to mix up various dense and sparse matching datasets, significantly improving the training diversity.
arXiv Detail & Related papers (2023-10-18T07:30:08Z) - History Matching for Geological Carbon Storage using Data-Space
Inversion with Spatio-Temporal Data Parameterization [0.0]
In data-space inversion (DSI), history-matched quantities of interest are inferred directly, without constructing posterior geomodels.
This is accomplished efficiently using a set of O(1000) prior simulation results, data parameterization, and posterior sampling within a Bayesian setting.
The new parameterization uses an adversarial autoencoder (AAE) for dimension reduction and a convolutional long short-term memory (convLSTM) network to represent the spatial distribution and temporal evolution of the pressure and saturation fields.
arXiv Detail & Related papers (2023-10-05T00:50:06Z) - Surrogate Model for Geological CO2 Storage and Its Use in Hierarchical
MCMC History Matching [0.0]
We extend the recently introduced recurrent R-U-Net surrogate model to treat geomodel realizations drawn from a wide range of geological scenarios.
We show that, using observed data from monitoring wells in synthetic true' models, geological uncertainty is reduced substantially.
arXiv Detail & Related papers (2023-08-11T18:29:28Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
We propose PreTraM, a self-supervised pre-training scheme for trajectory forecasting.
It consists of two parts: 1) Trajectory-Map Contrastive Learning, where we project trajectories and maps to a shared embedding space with cross-modal contrastive learning, and 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps.
On top of popular baselines such as AgentFormer and Trajectron++, PreTraM boosts their performance by 5.5% and 6.9% relatively in FDE-10 on the challenging nuScenes dataset.
arXiv Detail & Related papers (2022-04-21T23:01:21Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - Adversarial robustness for latent models: Revisiting the robust-standard
accuracies tradeoff [12.386462516398472]
adversarial training is often observed to drop the standard test accuracy.
In this paper, we argue that this tradeoff is mitigated when the data enjoys a low-dimensional structure.
We show that as the manifold dimension to the ambient dimension decreases, one can obtain models that are nearly optimal with respect to both, the standard accuracy and the robust accuracy measures.
arXiv Detail & Related papers (2021-10-22T17:58:27Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
We propose a monocular depth estimator SC-Depth, which requires only unlabelled videos for training.
Thanks to the capability of scale-consistent prediction, we show that our monocular-trained deep networks are readily integrated into the ORB-SLAM2 system.
The proposed hybrid Pseudo-RGBD SLAM shows compelling results in KITTI, and it generalizes well to the KAIST dataset without additional training.
arXiv Detail & Related papers (2021-05-25T02:17:56Z) - A Deep Learning-Accelerated Data Assimilation and Forecasting Workflow
for Commercial-Scale Geologic Carbon Storage [2.464972164779053]
We propose to leverage physical understandings of porous medium flow behavior with deep learning techniques to develop a fast history matching-reservoir response forecasting workflow.
We developed surrogate models to predict dynamic pressure and CO2 plume extents under multi-well injection.
The workflow can complete history matching and reservoir forecasting with uncertainty quantification in less than one hour on a mainstream personal workstation.
arXiv Detail & Related papers (2021-05-09T16:38:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.