Physics-Informed Geometry-Aware Neural Operator
- URL: http://arxiv.org/abs/2408.01600v3
- Date: Wed, 13 Nov 2024 17:41:43 GMT
- Title: Physics-Informed Geometry-Aware Neural Operator
- Authors: Weiheng Zhong, Hadi Meidani,
- Abstract summary: Engineering design problems often involve solving parametric Partial Differential Equations (PDEs) under variable PDE parameters and domain geometry.
Recently, neural operators have shown promise in learning PDE operators and quickly predicting the PDE solutions.
We introduce a novel method, the Physics-Informed Geometry-Aware Neural Operator (PI-GANO), designed to simultaneously generalize across both PDE parameters and domain geometries.
- Score: 1.2430809884830318
- License:
- Abstract: Engineering design problems often involve solving parametric Partial Differential Equations (PDEs) under variable PDE parameters and domain geometry. Recently, neural operators have shown promise in learning PDE operators and quickly predicting the PDE solutions. However, training these neural operators typically requires large datasets, the acquisition of which can be prohibitively expensive. To overcome this, physics-informed training offers an alternative way of building neural operators, eliminating the high computational costs associated with Finite Element generation of training data. Nevertheless, current physics-informed neural operators struggle with limitations, either in handling varying domain geometries or varying PDE parameters. In this research, we introduce a novel method, the Physics-Informed Geometry-Aware Neural Operator (PI-GANO), designed to simultaneously generalize across both PDE parameters and domain geometries. We adopt a geometry encoder to capture the domain geometry features, and design a novel pipeline to integrate this component within the existing DCON architecture. Numerical results demonstrate the accuracy and efficiency of the proposed method. All the codes and data related to this work are available on GitHub: https://github.com/WeihengZ/Physics-informed-Neural-Foundation-Operator.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Physics-informed Discretization-independent Deep Compositional Operator Network [1.2430809884830318]
We introduce a novel physics-informed model architecture which can generalize to various discrete representations of PDE parameters and irregular domain shapes.
Inspired by deep operator neural networks, our model involves a discretization-independent learning of parameter embedding repeatedly.
Numerical results demonstrate the accuracy and efficiency of the proposed method.
arXiv Detail & Related papers (2024-04-21T12:41:30Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
We propose Codomain Attention Neural Operator (CoDA-NO) to solve multiphysics problems with PDEs.
CoDA-NO tokenizes functions along the codomain or channel space, enabling self-supervised learning or pretraining of multiple PDE systems.
We find CoDA-NO to outperform existing methods by over 36% on complex downstream tasks with limited data.
arXiv Detail & Related papers (2024-03-19T08:56:20Z) - GIT-Net: Generalized Integral Transform for Operator Learning [58.13313857603536]
This article introduces GIT-Net, a deep neural network architecture for approximating Partial Differential Equation (PDE) operators.
GIT-Net harnesses the fact that differential operators commonly used for defining PDEs can often be represented parsimoniously when expressed in specialized functional bases.
Numerical experiments demonstrate that GIT-Net is a competitive neural network operator, exhibiting small test errors and low evaluations across a range of PDE problems.
arXiv Detail & Related papers (2023-12-05T03:03:54Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Learning Only On Boundaries: a Physics-Informed Neural operator for
Solving Parametric Partial Differential Equations in Complex Geometries [10.250994619846416]
We present a novel physics-informed neural operator method to solve parametrized boundary value problems without labeled data.
Our numerical experiments show the effectiveness of parametrized complex geometries and unbounded problems.
arXiv Detail & Related papers (2023-08-24T17:29:57Z) - Physics informed WNO [0.0]
We propose a physics-informed Wavelet Operator (WNO) for learning the solution operators of families of parametric partial differential equations (PDEs) without labeled training data.
The efficacy of the framework is validated and illustrated with four nonlinear neural systems relevant to various fields of engineering and science.
arXiv Detail & Related papers (2023-02-12T14:31:50Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Multi-scale Physical Representations for Approximating PDE Solutions
with Graph Neural Operators [14.466945570499183]
We study three multi-resolution schema with integral kernel operators approximated with emphMessage Passing Graph Neural Networks (MPGNNs)
To validate our study, we make extensive MPGNNs experiments with well-chosen metrics considering steady and unsteady PDEs.
arXiv Detail & Related papers (2022-06-29T14:42:03Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.