Physics informed WNO
- URL: http://arxiv.org/abs/2302.05925v1
- Date: Sun, 12 Feb 2023 14:31:50 GMT
- Title: Physics informed WNO
- Authors: Navaneeth N and Tapas Tripura and Souvik Chakraborty
- Abstract summary: We propose a physics-informed Wavelet Operator (WNO) for learning the solution operators of families of parametric partial differential equations (PDEs) without labeled training data.
The efficacy of the framework is validated and illustrated with four nonlinear neural systems relevant to various fields of engineering and science.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural operators are recognized as an effective tool for learning
solution operators of complex partial differential equations (PDEs). As
compared to laborious analytical and computational tools, a single neural
operator can predict solutions of PDEs for varying initial or boundary
conditions and different inputs. A recently proposed Wavelet Neural Operator
(WNO) is one such operator that harnesses the advantage of time-frequency
localization of wavelets to capture the manifolds in the spatial domain
effectively. While WNO has proven to be a promising method for operator
learning, the data-hungry nature of the framework is a major shortcoming. In
this work, we propose a physics-informed WNO for learning the solution
operators of families of parametric PDEs without labeled training data. The
efficacy of the framework is validated and illustrated with four nonlinear
spatiotemporal systems relevant to various fields of engineering and science.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Physics-Informed Geometry-Aware Neural Operator [1.2430809884830318]
Engineering design problems often involve solving parametric Partial Differential Equations (PDEs) under variable PDE parameters and domain geometry.
Recently, neural operators have shown promise in learning PDE operators and quickly predicting the PDE solutions.
We introduce a novel method, the Physics-Informed Geometry-Aware Neural Operator (PI-GANO), designed to simultaneously generalize across both PDE parameters and domain geometries.
arXiv Detail & Related papers (2024-08-02T23:11:42Z) - DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
We propose and formulate the Physical Trajectory Residual Learning (DeltaPhi)
We learn the surrogate model for the residual operator mapping based on existing neural operator networks.
We conclude that, compared to direct learning, physical residual learning is preferred for PDE solving.
arXiv Detail & Related papers (2024-06-14T07:45:07Z) - Parametric Learning of Time-Advancement Operators for Unstable Flame
Evolution [0.0]
This study investigates the application of machine learning to learn time-advancement operators for parametric partial differential equations (PDEs)
Our focus is on extending existing operator learning methods to handle additional inputs representing PDE parameters.
The goal is to create a unified learning approach that accurately predicts short-term solutions and provides robust long-term statistics.
arXiv Detail & Related papers (2024-02-14T18:12:42Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
We develop a novel contrastive pretraining framework that improves neural operator generalization across multiple governing equations simultaneously.
A combination of physics-informed system evolution and latent-space model output are anchored to input data and used in our distance function.
We find that physics-informed contrastive pretraining improves accuracy for the Fourier Neural Operator in fixed-future and autoregressive rollout tasks for the 1D and 2D Heat, Burgers', and linear advection equations.
arXiv Detail & Related papers (2024-01-29T17:32:22Z) - Waveformer for modelling dynamical systems [1.0878040851638]
We propose "waveformer", a novel operator learning approach for learning solutions of dynamical systems.
The proposed waveformer exploits wavelet transform to capture the spatial multi-scale behavior of the solution field and transformers.
We show that the proposed Waveformer can learn the solution operator with high accuracy, outperforming existing state-of-the-art operator learning algorithms by up to an order.
arXiv Detail & Related papers (2023-10-08T03:34:59Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Learning Only On Boundaries: a Physics-Informed Neural operator for
Solving Parametric Partial Differential Equations in Complex Geometries [10.250994619846416]
We present a novel physics-informed neural operator method to solve parametrized boundary value problems without labeled data.
Our numerical experiments show the effectiveness of parametrized complex geometries and unbounded problems.
arXiv Detail & Related papers (2023-08-24T17:29:57Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
We propose to enhance the supervised signal in learning dynamics by pre-training a neural differential operator (NDO)
NDO is pre-trained on a class of symbolic functions, and it learns the mapping between the trajectory samples of these functions to their derivatives.
We provide theoretical guarantee on that the output of NDO can well approximate the ground truth derivatives by proper tuning the complexity of the library.
arXiv Detail & Related papers (2021-06-08T08:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.