Voices from the Frontier: A Comprehensive Analysis of the OpenAI Developer Forum
- URL: http://arxiv.org/abs/2408.01687v1
- Date: Sat, 3 Aug 2024 06:57:43 GMT
- Title: Voices from the Frontier: A Comprehensive Analysis of the OpenAI Developer Forum
- Authors: Xinyi Hou, Yanjie Zhao, Haoyu Wang,
- Abstract summary: OpenAI's advanced large language models (LLMs) have revolutionized natural language processing and enabled developers to create innovative applications.
This paper presents a comprehensive analysis of the OpenAI Developer Forum.
We focus on (1) popularity trends and user engagement patterns, and (2) a taxonomy of challenges and concerns faced by developers.
- Score: 5.667013605202579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: OpenAI's advanced large language models (LLMs) have revolutionized natural language processing and enabled developers to create innovative applications. As adoption grows, understanding the experiences and challenges of developers working with these technologies is crucial. This paper presents a comprehensive analysis of the OpenAI Developer Forum, focusing on (1) popularity trends and user engagement patterns, and (2) a taxonomy of challenges and concerns faced by developers. We first employ a quantitative analysis of the metadata from 29,576 forum topics, investigating temporal trends in topic creation, the popularity of topics across different categories, and user contributions at various trust levels. We then qualitatively analyze content from 9,301 recently active topics on developer concerns. From a sample of 886 topics, we construct a taxonomy of concerns in the OpenAI Developer Forum. Our findings uncover critical concerns raised by developers in creating AI-powered applications and offer targeted recommendations to address them. This work not only advances AI-assisted software engineering but also empowers developer communities to shape the responsible evolution and integration of AI technology in society.
Related papers
- Developer Challenges on Large Language Models: A Study of Stack Overflow and OpenAI Developer Forum Posts [2.704899832646869]
Large Language Models (LLMs) have gained widespread popularity due to their exceptional capabilities across various domains.
This study investigates developers' challenges by analyzing community interactions on Stack Overflow and OpenAI Developer Forum.
arXiv Detail & Related papers (2024-11-16T19:38:27Z) - Investigating Developers' Preferences for Learning and Issue Resolution Resources in the ChatGPT Era [1.3124513975412255]
The landscape of software developer learning resources has continuously evolved, with recent trends favoring engaging formats like video tutorials.
The emergence of Large Language Models (LLMs) like ChatGPT presents a new learning paradigm.
We conducted a survey targeting software developers and computer science students, gathering 341 responses, of which 268 were completed and analyzed.
arXiv Detail & Related papers (2024-10-10T22:57:29Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - OpenHands: An Open Platform for AI Software Developers as Generalist Agents [109.8507367518992]
We introduce OpenHands, a platform for the development of AI agents that interact with the world in similar ways to a human developer.
We describe how the platform allows for the implementation of new agents, safe interaction with sandboxed environments for code execution, and incorporation of evaluation benchmarks.
arXiv Detail & Related papers (2024-07-23T17:50:43Z) - Toward Programming Languages for Reasoning: Humans, Symbolic Systems, and AI Agents [0.0]
Integration, composition, mechanization, and AI assisted development are the driving themes in the future of software development.
This paper proposes a novel approach to this challenge -- instead of new language features or logical constructs, we propose radical simplification in the form of the Bosque platform and language.
arXiv Detail & Related papers (2024-07-08T19:50:42Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Development in times of hype: How freelancers explore Generative AI? [0.0]
Generative AI presents unique challenges to developers who have not previously engaged with it.
We identify multiple challenges associated with developing solutions based on generative AI.
We propose Software Engineering for Generative AI (SE4GenAI) and Hype-Induced Software Engineering (HypeSE) as areas where the software engineering community can provide effective guidance.
arXiv Detail & Related papers (2024-01-11T09:49:50Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC)
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
arXiv Detail & Related papers (2023-03-07T20:36:13Z) - AI Explainability 360: Impact and Design [120.95633114160688]
In 2019, we created AI Explainability 360 (Arya et al. 2020), an open source software toolkit featuring ten diverse and state-of-the-art explainability methods.
This paper examines the impact of the toolkit with several case studies, statistics, and community feedback.
The paper also describes the flexible design of the toolkit, examples of its use, and the significant educational material and documentation available to its users.
arXiv Detail & Related papers (2021-09-24T19:17:09Z) - aiSTROM -- A roadmap for developing a successful AI strategy [3.5788754401889014]
A total of 34% of AI research and development projects fails or are abandoned, according to a recent survey by Rackspace Technology.
We propose a new strategic framework, aiSTROM, that empowers managers to create a successful AI strategy.
arXiv Detail & Related papers (2021-06-25T08:40:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.