Towards Anthropomorphic Conversational AI Part I: A Practical Framework
- URL: http://arxiv.org/abs/2503.04787v1
- Date: Fri, 28 Feb 2025 03:18:39 GMT
- Title: Towards Anthropomorphic Conversational AI Part I: A Practical Framework
- Authors: Fei Wei, Yaliang Li, Bolin Ding,
- Abstract summary: We introduce a multi- module framework designed to replicate the key aspects of human intelligence involved in conversations.<n>In the second stage of our approach, these conversational data, after filtering and labeling, can serve as training and testing data for reinforcement learning.
- Score: 49.62013440962072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs), due to their advanced natural language capabilities, have seen significant success in applications where the user interface is usually a conversational artificial intelligence (AI) agent and engages the user through multi-round conversations. However, many scenarios require the agents to exhibit stronger social and conversational intelligence and demonstrate more human-like (anthropomorphic) reactions. This is an aspect that foundational LLMs have yet to fully address such that a single call of foundational models might be insufficient. To bridge this gap, we propose a two-stage solution. In this work, we focus on the first stage, introducing a multi-module framework designed to replicate the key aspects of human intelligence involved in conversations. This framework comprises thinking modules for reasoning, resource modules for managing knowledge and external information, and response modules for generating contextually appropriate interactions. With all the modules cooperating, the framework would empower the agents to provide a better human-like conversation experience. In the second stage of our approach, these conversational data, after filtering and labeling, can serve as training and testing data for reinforcement learning, enabling AI to better capture human preferences. This stage is left for future work. In our experiments, volunteers engaged in over 3000 rounds of conversation with the same AI character powered by a standalone LLM and our framework which integrates the same LLM. A separate group of evaluators rated the conversation samples, revealing that our framework significantly enhanced the social and conversational intelligence, even without fine-tuning the LLM.
Related papers
- Towards Online Multi-Modal Social Interaction Understanding [36.37278022436327]
We propose an online MMSI setting, where the model must resolve MMSI tasks using only historical information, such as recorded dialogues and video streams.
We develop a novel framework, named Online-MMSI-VLM, that leverages two complementary strategies: multi-party conversation forecasting and social-aware visual prompting.
Our method achieves state-of-the-art performance and significantly outperforms baseline models, indicating its effectiveness on Online-MMSI.
arXiv Detail & Related papers (2025-03-25T17:17:19Z) - Training Language Models for Social Deduction with Multi-Agent Reinforcement Learning [31.196865401472664]
We train language models to have productive discussions about their environment in natural language without any human demonstrations.<n>We leverage the agent's goal to predict useful information about the world as a dense reward signal that guides communication.<n>We analyze emergent behaviors due to our technique, such as accusing suspects and providing evidence, and find that it enables strong discussions.
arXiv Detail & Related papers (2025-02-09T22:44:45Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
Many real dialogues are interactive, meaning an agent's utterances will influence their conversational partner, elicit information, or change their opinion.
We use this fact to rewrite and augment existing suboptimal data, and train via offline reinforcement learning (RL) an agent that outperforms both prompting and learning from unaltered human demonstrations.
Our results in a user study with real humans show that our approach greatly outperforms existing state-of-the-art dialogue agents.
arXiv Detail & Related papers (2024-11-07T21:37:51Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
We introduce a model-agnostic framework, the Long-term Dialogue Agent (LD-Agent)<n>It incorporates three independently tunable modules dedicated to event perception, persona extraction, and response generation.<n>The effectiveness, generality, and cross-domain capabilities of LD-Agent are empirically demonstrated.
arXiv Detail & Related papers (2024-06-09T21:58:32Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - Think Before You Speak: Cultivating Communication Skills of Large Language Models via Inner Monologue [73.69510478736483]
Large language models (LLMs) can generate fluent, coherent, and diverse responses.
However, they lack a crucial ability: communication skills.
This article aims to empower LLMs with communication skills through inner monologues.
Experimental results show that the proposed CSIM strategy improves the backbone models and outperforms the baselines.
arXiv Detail & Related papers (2023-11-13T16:19:42Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks.
However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome.
In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue.
arXiv Detail & Related papers (2023-11-09T18:45:16Z) - Tackling Vision Language Tasks Through Learning Inner Monologues [10.795616787372625]
We propose a novel approach, Inner Monologue Multi-Modal Optimization (IMMO), to solve complex vision language problems.
IMMO simulates inner monologue processes, a cognitive process in which an individual engages in silent verbal communication with themselves.
The results suggest IMMO can enhance reasoning and explanation abilities, contributing to the more effective fusion of vision and language models.
arXiv Detail & Related papers (2023-08-19T10:10:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.