Graph Stochastic Neural Process for Inductive Few-shot Knowledge Graph Completion
- URL: http://arxiv.org/abs/2408.01784v1
- Date: Sat, 03 Aug 2024 13:37:40 GMT
- Title: Graph Stochastic Neural Process for Inductive Few-shot Knowledge Graph Completion
- Authors: Zicheng Zhao, Linhao Luo, Shirui Pan, Chengqi Zhang, Chen Gong,
- Abstract summary: We focus on a task called inductive few-shot knowledge graph completion (I-FKGC)
Inspired by the idea of inductive reasoning, we cast I-FKGC as an inductive reasoning problem.
We present a neural process-based hypothesis extractor that models the joint distribution of hypothesis, from which we can sample a hypothesis for predictions.
In the second module, based on the hypothesis, we propose a graph attention-based predictor to test if the triple in the query set aligns with the extracted hypothesis.
- Score: 63.68647582680998
- License:
- Abstract: Knowledge graphs (KGs) store enormous facts as relationships between entities. Due to the long-tailed distribution of relations and the incompleteness of KGs, there is growing interest in few-shot knowledge graph completion (FKGC). Existing FKGC methods often assume the existence of all entities in KGs, which may not be practical since new relations and entities can emerge over time. Therefore, we focus on a more challenging task called inductive few-shot knowledge graph completion (I-FKGC), where both relations and entities during the test phase are unknown before. Inspired by the idea of inductive reasoning, we cast I-FKGC as an inductive reasoning problem. Specifically, we propose a novel Graph Stochastic Neural Process approach (GS-NP), which consists of two major modules. In the first module, to obtain a generalized hypothesis (e.g., shared subgraph), we present a neural process-based hypothesis extractor that models the joint distribution of hypothesis, from which we can sample a hypothesis for predictions. In the second module, based on the hypothesis, we propose a graph stochastic attention-based predictor to test if the triple in the query set aligns with the extracted hypothesis. Meanwhile, the predictor can generate an explanatory subgraph identified by the hypothesis. Finally, the training of these two modules is seamlessly combined into a unified objective function, of which the effectiveness is verified by theoretical analyses as well as empirical studies. Extensive experiments on three public datasets demonstrate that our method outperforms existing methods and derives new state-of-the-art performance.
Related papers
- Does Graph Prompt Work? A Data Operation Perspective with Theoretical Analysis [7.309233340654514]
This paper introduces a theoretical framework that rigorously analyzes graph prompting from a data operation perspective.
We provide a formal guarantee theorem, demonstrating graph prompts capacity to approximate graph transformation operators.
We derive upper bounds on the error of these data operations by graph prompts for a single graph and extend this discussion to batches of graphs.
arXiv Detail & Related papers (2024-10-02T15:07:13Z) - Towards Few-shot Inductive Link Prediction on Knowledge Graphs: A
Relational Anonymous Walk-guided Neural Process Approach [49.00753238429618]
Few-shot inductive link prediction on knowledge graphs aims to predict missing links for unseen entities with few-shot links observed.
Recent inductive methods utilize the sub-graphs around unseen entities to obtain the semantics and predict links inductively.
We propose a novel relational anonymous walk-guided neural process for few-shot inductive link prediction on knowledge graphs, denoted as RawNP.
arXiv Detail & Related papers (2023-06-26T12:02:32Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
We introduce a new tool, the interaction tensor, for empirically analyzing the interaction between data and model through features.
Based on these observations, we propose a conceptual framework for feature learning.
Under this framework, the expected accuracy for a single hypothesis and agreement for a pair of hypotheses can both be derived in closed-form.
arXiv Detail & Related papers (2023-06-07T21:35:26Z) - Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph
Completion [69.55700751102376]
Few-shot knowledge graph completion (FKGC) aims to predict missing facts for unseen relations with few-shot associated facts.
Existing FKGC methods are based on metric learning or meta-learning, which often suffer from the out-of-distribution and overfitting problems.
In this paper, we propose a normalizing flow-based neural process for few-shot knowledge graph completion (NP-FKGC)
arXiv Detail & Related papers (2023-04-17T11:42:28Z) - Structure Learning and Parameter Estimation for Graphical Models via
Penalized Maximum Likelihood Methods [0.0]
In the thesis, we consider two different types of PGMs: Bayesian networks (BNs) which are static, and continuous time Bayesian networks which, as the name suggests, have a temporal component.
We are interested in recovering their true structure, which is the first step in learning any PGM.
arXiv Detail & Related papers (2023-01-30T20:26:13Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - OOD Link Prediction Generalization Capabilities of Message-Passing GNNs
in Larger Test Graphs [13.118954965368333]
This work provides the first theoretical study on the ability of graph Message Passing Neural Networks (gMPNNs) to perform inductive out-of-distribution (OOD) link prediction tasks.
We first prove non-asymptotic bounds showing that link predictors based on permutation-equivariant (structural) node embeddings can converge to a random guess as test graphs get larger.
We then propose a theoretically-sound gMPNN that outputs structural pairwise (2-node) embeddings and prove non-asymptotic bounds showing that, as test graphs grow, these embeddings converge to embeddings of
arXiv Detail & Related papers (2022-05-30T14:04:32Z) - Learning Representations of Entities and Relations [0.0]
This thesis focuses on improving knowledge graph representation with the aim of tackling the link prediction task.
The first contribution is HypER, a convolutional model which simplifies and improves upon the link prediction performance.
The second contribution is TuckER, a relatively straightforward linear model, which, at the time of its introduction, obtained state-of-the-art link prediction performance.
The third contribution is MuRP, first multi-relational graph representation model embedded in hyperbolic space.
arXiv Detail & Related papers (2022-01-31T09:24:43Z) - Exploring the Limits of Few-Shot Link Prediction in Knowledge Graphs [49.6661602019124]
We study a spectrum of models derived by generalizing the current state of the art for few-shot link prediction.
We find that a simple zero-shot baseline - which ignores any relation-specific information - achieves surprisingly strong performance.
Experiments on carefully crafted synthetic datasets show that having only a few examples of a relation fundamentally limits models from using fine-grained structural information.
arXiv Detail & Related papers (2021-02-05T21:04:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.