Does Graph Prompt Work? A Data Operation Perspective with Theoretical Analysis
- URL: http://arxiv.org/abs/2410.01635v1
- Date: Wed, 2 Oct 2024 15:07:13 GMT
- Title: Does Graph Prompt Work? A Data Operation Perspective with Theoretical Analysis
- Authors: Qunzhong Wang, Xiangguo Sun, Hong Cheng,
- Abstract summary: This paper introduces a theoretical framework that rigorously analyzes graph prompting from a data operation perspective.
We provide a formal guarantee theorem, demonstrating graph prompts capacity to approximate graph transformation operators.
We derive upper bounds on the error of these data operations by graph prompts for a single graph and extend this discussion to batches of graphs.
- Score: 7.309233340654514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, graph prompting has emerged as a promising research direction, enabling the learning of additional tokens or subgraphs appended to the original graphs without requiring retraining of pre-trained graph models across various applications. This novel paradigm, shifting from the traditional pretraining and finetuning to pretraining and prompting has shown significant empirical success in simulating graph data operations, with applications ranging from recommendation systems to biological networks and graph transferring. However, despite its potential, the theoretical underpinnings of graph prompting remain underexplored, raising critical questions about its fundamental effectiveness. The lack of rigorous theoretical proof of why and how much it works is more like a dark cloud over the graph prompt area to go further. To fill this gap, this paper introduces a theoretical framework that rigorously analyzes graph prompting from a data operation perspective. Our contributions are threefold: First, we provide a formal guarantee theorem, demonstrating graph prompts capacity to approximate graph transformation operators, effectively linking upstream and downstream tasks. Second, we derive upper bounds on the error of these data operations by graph prompts for a single graph and extend this discussion to batches of graphs, which are common in graph model training. Third, we analyze the distribution of data operation errors, extending our theoretical findings from linear graph models (e.g., GCN) to non-linear graph models (e.g., GAT). Extensive experiments support our theoretical results and confirm the practical implications of these guarantees.
Related papers
- Parametric Graph Representations in the Era of Foundation Models: A Survey and Position [69.48708136448694]
Graphs have been widely used in the past decades of big data and AI to model comprehensive relational data.
Identifying meaningful graph laws can significantly enhance the effectiveness of various applications.
arXiv Detail & Related papers (2024-10-16T00:01:31Z) - Inductive Graph Alignment Prompt: Bridging the Gap between Graph
Pre-training and Inductive Fine-tuning From Spectral Perspective [13.277779426525056]
"Graph pre-training and fine-tuning" paradigm has significantly improved Graph Neural Networks(GNNs)
However, due to the immense gap of data and tasks between the pre-training and fine-tuning stages, the model performance is still limited.
We propose a novel graph prompt based method called Inductive Graph Alignment Prompt(IGAP)
arXiv Detail & Related papers (2024-02-21T06:25:54Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
We propose Robust Causal Graph Representation Learning (RCGRL) to learn robust graph representations against confounding effects.
RCGRL introduces an active approach to generate instrumental variables under unconditional moment restrictions, which empowers the graph representation learning model to eliminate confounders.
arXiv Detail & Related papers (2022-08-18T01:31:25Z) - Learning node embeddings via summary graphs: a brief theoretical
analysis [55.25628709267215]
Graph representation learning plays an important role in many graph mining applications, but learning embeddings of large-scale graphs remains a problem.
Recent works try to improve scalability via graph summarization -- i.e., they learn embeddings on a smaller summary graph, and then restore the node embeddings of the original graph.
We give an in-depth theoretical analysis of three specific embedding learning methods based on introduced kernel matrix.
arXiv Detail & Related papers (2022-07-04T04:09:50Z) - Principle of Relevant Information for Graph Sparsification [27.54740921723433]
Graph sparsification aims to reduce the number of edges of a graph while maintaining its structural properties.
We propose the first general and effective information-theoretic formulation of graph sparsification, by taking inspiration from the Principle of Relevant Information (PRI)
We present three representative real-world applications, namely graph sparsification, graph regularized multi-task learning, and medical imaging-derived brain network classification.
arXiv Detail & Related papers (2022-05-31T21:00:42Z) - Learning on Random Balls is Sufficient for Estimating (Some) Graph
Parameters [28.50409304490877]
We develop a theoretical framework for graph classification problems in the partial observation setting.
We propose a new graph classification model that works on a randomly sampled subgraph.
arXiv Detail & Related papers (2021-11-05T08:32:46Z) - Unbiased Graph Embedding with Biased Graph Observations [52.82841737832561]
We propose a principled new way for obtaining unbiased representations by learning from an underlying bias-free graph.
Based on this new perspective, we propose two complementary methods for uncovering such an underlying graph.
arXiv Detail & Related papers (2021-10-26T18:44:37Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Deep Learning for Learning Graph Representations [58.649784596090385]
Mining graph data has become a popular research topic in computer science.
The huge amount of network data has posed great challenges for efficient analysis.
This motivates the advent of graph representation which maps the graph into a low-dimension vector space.
arXiv Detail & Related papers (2020-01-02T02:13:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.