E$^3$NeRF: Efficient Event-Enhanced Neural Radiance Fields from Blurry Images
- URL: http://arxiv.org/abs/2408.01840v1
- Date: Sat, 3 Aug 2024 18:47:31 GMT
- Title: E$^3$NeRF: Efficient Event-Enhanced Neural Radiance Fields from Blurry Images
- Authors: Yunshan Qi, Jia Li, Yifan Zhao, Yu Zhang, Lin Zhu,
- Abstract summary: We propose a novel Efficient Event-Enhanced NeRF (E$3$NeRF)
We leverage spatial-temporal information from the event stream to evenly distribute learning attention over temporal blur.
Experiments on both synthetic data and real-world data demonstrate that E$3$NeRF can effectively learn a sharp NeRF from blurry images.
- Score: 25.304680391243537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRF) achieve impressive rendering performance by learning volumetric 3D representation from several images of different views. However, it is difficult to reconstruct a sharp NeRF from blurry input as it often occurs in the wild. To solve this problem, we propose a novel Efficient Event-Enhanced NeRF (E$^3$NeRF) by utilizing the combination of RGB images and event streams. To effectively introduce event streams into the neural volumetric representation learning process, we propose an event-enhanced blur rendering loss and an event rendering loss, which guide the network via modeling the real blur process and event generation process, respectively. Specifically, we leverage spatial-temporal information from the event stream to evenly distribute learning attention over temporal blur while simultaneously focusing on blurry texture through the spatial attention. Moreover, a camera pose estimation framework for real-world data is built with the guidance of the events to generalize the method to practical applications. Compared to previous image-based or event-based NeRF, our framework makes more profound use of the internal relationship between events and images. Extensive experiments on both synthetic data and real-world data demonstrate that E$^3$NeRF can effectively learn a sharp NeRF from blurry images, especially in non-uniform motion and low-light scenes.
Related papers
- Deblurring Neural Radiance Fields with Event-driven Bundle Adjustment [23.15130387716121]
We propose Bundle Adjustment for Deblurring Neural Radiance Fields (EBAD-NeRF) to jointly optimize the learnable poses and NeRF parameters.
EBAD-NeRF can obtain accurate camera trajectory during the exposure time and learn a sharper 3D representations compared to prior works.
arXiv Detail & Related papers (2024-06-20T14:33:51Z) - EvDNeRF: Reconstructing Event Data with Dynamic Neural Radiance Fields [80.94515892378053]
EvDNeRF is a pipeline for generating event data and training an event-based dynamic NeRF.
NeRFs offer geometric-based learnable rendering, but prior work with events has only considered reconstruction of static scenes.
We show that by training on varied batch sizes of events, we can improve test-time predictions of events at fine time resolutions.
arXiv Detail & Related papers (2023-10-03T21:08:41Z) - Learning Parallax for Stereo Event-based Motion Deblurring [8.201943408103995]
Existing approaches rely on the perfect pixel-wise alignment between intensity images and events, which is not always fulfilled in the real world.
We propose a novel coarse-to-fine framework, named NETwork of Event-based motion Deblurring with STereo event and intensity cameras (St-EDNet)
We build a new dataset with STereo Event and Intensity Cameras (StEIC), containing real-world events, intensity images, and dense disparity maps.
arXiv Detail & Related papers (2023-09-18T06:51:41Z) - Robust e-NeRF: NeRF from Sparse & Noisy Events under Non-Uniform Motion [67.15935067326662]
Event cameras offer low power, low latency, high temporal resolution and high dynamic range.
NeRF is seen as the leading candidate for efficient and effective scene representation.
We propose Robust e-NeRF, a novel method to directly and robustly reconstruct NeRFs from moving event cameras.
arXiv Detail & Related papers (2023-09-15T17:52:08Z) - Deformable Neural Radiance Fields using RGB and Event Cameras [65.40527279809474]
We develop a novel method to model the deformable neural radiance fields using RGB and event cameras.
The proposed method uses the asynchronous stream of events and sparse RGB frames.
Experiments conducted on both realistically rendered graphics and real-world datasets demonstrate a significant benefit of the proposed method.
arXiv Detail & Related papers (2023-09-15T14:19:36Z) - BAD-NeRF: Bundle Adjusted Deblur Neural Radiance Fields [9.744593647024253]
We present a novel bundle adjusted deblur Neural Radiance Fields (BAD-NeRF)
BAD-NeRF can be robust to severe motion blurred images and inaccurate camera poses.
Our approach models the physical image formation process of a motion blurred image, and jointly learns the parameters of NeRF.
arXiv Detail & Related papers (2022-11-23T10:53:37Z) - E-NeRF: Neural Radiance Fields from a Moving Event Camera [83.91656576631031]
Estimating neural radiance fields (NeRFs) from ideal images has been extensively studied in the computer vision community.
We present E-NeRF, the first method which estimates a volumetric scene representation in the form of a NeRF from a fast-moving event camera.
arXiv Detail & Related papers (2022-08-24T04:53:32Z) - EventNeRF: Neural Radiance Fields from a Single Colour Event Camera [81.19234142730326]
This paper proposes the first approach for 3D-consistent, dense and novel view synthesis using just a single colour event stream as input.
At its core is a neural radiance field trained entirely in a self-supervised manner from events while preserving the original resolution of the colour event channels.
We evaluate our method qualitatively and numerically on several challenging synthetic and real scenes and show that it produces significantly denser and more visually appealing renderings.
arXiv Detail & Related papers (2022-06-23T17:59:53Z) - EventSR: From Asynchronous Events to Image Reconstruction, Restoration,
and Super-Resolution via End-to-End Adversarial Learning [75.17497166510083]
Event cameras sense intensity changes and have many advantages over conventional cameras.
Some methods have been proposed to reconstruct intensity images from event streams.
The outputs are still in low resolution (LR), noisy, and unrealistic.
We propose a novel end-to-end pipeline that reconstructs LR images from event streams, enhances the image qualities and upsamples the enhanced images, called EventSR.
arXiv Detail & Related papers (2020-03-17T10:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.