AE-NeRF: Augmenting Event-Based Neural Radiance Fields for Non-ideal Conditions and Larger Scene
- URL: http://arxiv.org/abs/2501.02807v2
- Date: Tue, 07 Jan 2025 07:47:22 GMT
- Title: AE-NeRF: Augmenting Event-Based Neural Radiance Fields for Non-ideal Conditions and Larger Scene
- Authors: Chaoran Feng, Wangbo Yu, Xinhua Cheng, Zhenyu Tang, Junwu Zhang, Li Yuan, Yonghong Tian,
- Abstract summary: We propose AE-NeRF to address the challenges of learning event-based NeRF from non-ideal conditions.
Our method achieves a new state-of-the-art in event-based 3D reconstruction.
- Score: 31.142207770861457
- License:
- Abstract: Compared to frame-based methods, computational neuromorphic imaging using event cameras offers significant advantages, such as minimal motion blur, enhanced temporal resolution, and high dynamic range. The multi-view consistency of Neural Radiance Fields combined with the unique benefits of event cameras, has spurred recent research into reconstructing NeRF from data captured by moving event cameras. While showing impressive performance, existing methods rely on ideal conditions with the availability of uniform and high-quality event sequences and accurate camera poses, and mainly focus on the object level reconstruction, thus limiting their practical applications. In this work, we propose AE-NeRF to address the challenges of learning event-based NeRF from non-ideal conditions, including non-uniform event sequences, noisy poses, and various scales of scenes. Our method exploits the density of event streams and jointly learn a pose correction module with an event-based NeRF (e-NeRF) framework for robust 3D reconstruction from inaccurate camera poses. To generalize to larger scenes, we propose hierarchical event distillation with a proposal e-NeRF network and a vanilla e-NeRF network to resample and refine the reconstruction process. We further propose an event reconstruction loss and a temporal loss to improve the view consistency of the reconstructed scene. We established a comprehensive benchmark that includes large-scale scenes to simulate practical non-ideal conditions, incorporating both synthetic and challenging real-world event datasets. The experimental results show that our method achieves a new state-of-the-art in event-based 3D reconstruction.
Related papers
- EventSplat: 3D Gaussian Splatting from Moving Event Cameras for Real-time Rendering [7.392798832833857]
Event cameras offer exceptional temporal resolution and a high dynamic range.
We introduce a method for using event camera data in novel view synthesis via Gaussian Splatting.
arXiv Detail & Related papers (2024-12-10T08:23:58Z) - E-3DGS: Gaussian Splatting with Exposure and Motion Events [29.042018288378447]
We propose E-3DGS, a novel event-based approach that partitions events into motion and exposure.
We introduce a novel integration of 3DGS with exposure events for high-quality reconstruction of explicit scene representations.
Our method is faster and delivers better reconstruction quality than event-based NeRF while being more cost-effective than NeRF methods.
arXiv Detail & Related papers (2024-10-22T13:17:20Z) - Deblur e-NeRF: NeRF from Motion-Blurred Events under High-speed or Low-light Conditions [56.84882059011291]
We propose Deblur e-NeRF, a novel method to reconstruct blur-minimal NeRFs from motion-red events.
We also introduce a novel threshold-normalized total variation loss to improve the regularization of large textureless patches.
arXiv Detail & Related papers (2024-09-26T15:57:20Z) - E$^3$NeRF: Efficient Event-Enhanced Neural Radiance Fields from Blurry Images [25.304680391243537]
We propose a novel Efficient Event-Enhanced NeRF (E$3$NeRF)
We leverage spatial-temporal information from the event stream to evenly distribute learning attention over temporal blur.
Experiments on both synthetic data and real-world data demonstrate that E$3$NeRF can effectively learn a sharp NeRF from blurry images.
arXiv Detail & Related papers (2024-08-03T18:47:31Z) - Mitigating Motion Blur in Neural Radiance Fields with Events and Frames [21.052912896866953]
We propose a novel approach to enhance NeRF reconstructions under camera motion by fusing frames and events.
We explicitly model the blur formation process, exploiting the event double integral as an additional model-based prior.
We show, on synthetic and real data, that the proposed approach outperforms existing deblur NeRFs that use only frames.
arXiv Detail & Related papers (2024-03-28T19:06:37Z) - ReconFusion: 3D Reconstruction with Diffusion Priors [104.73604630145847]
We present ReconFusion to reconstruct real-world scenes using only a few photos.
Our approach leverages a diffusion prior for novel view synthesis, trained on synthetic and multiview datasets.
Our method synthesizes realistic geometry and texture in underconstrained regions while preserving the appearance of observed regions.
arXiv Detail & Related papers (2023-12-05T18:59:58Z) - EvDNeRF: Reconstructing Event Data with Dynamic Neural Radiance Fields [80.94515892378053]
EvDNeRF is a pipeline for generating event data and training an event-based dynamic NeRF.
NeRFs offer geometric-based learnable rendering, but prior work with events has only considered reconstruction of static scenes.
We show that by training on varied batch sizes of events, we can improve test-time predictions of events at fine time resolutions.
arXiv Detail & Related papers (2023-10-03T21:08:41Z) - Robust e-NeRF: NeRF from Sparse & Noisy Events under Non-Uniform Motion [67.15935067326662]
Event cameras offer low power, low latency, high temporal resolution and high dynamic range.
NeRF is seen as the leading candidate for efficient and effective scene representation.
We propose Robust e-NeRF, a novel method to directly and robustly reconstruct NeRFs from moving event cameras.
arXiv Detail & Related papers (2023-09-15T17:52:08Z) - E-NeRF: Neural Radiance Fields from a Moving Event Camera [83.91656576631031]
Estimating neural radiance fields (NeRFs) from ideal images has been extensively studied in the computer vision community.
We present E-NeRF, the first method which estimates a volumetric scene representation in the form of a NeRF from a fast-moving event camera.
arXiv Detail & Related papers (2022-08-24T04:53:32Z) - EventSR: From Asynchronous Events to Image Reconstruction, Restoration,
and Super-Resolution via End-to-End Adversarial Learning [75.17497166510083]
Event cameras sense intensity changes and have many advantages over conventional cameras.
Some methods have been proposed to reconstruct intensity images from event streams.
The outputs are still in low resolution (LR), noisy, and unrealistic.
We propose a novel end-to-end pipeline that reconstructs LR images from event streams, enhances the image qualities and upsamples the enhanced images, called EventSR.
arXiv Detail & Related papers (2020-03-17T10:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.