Safe Semi-Supervised Contrastive Learning Using In-Distribution Data as Positive Examples
- URL: http://arxiv.org/abs/2408.01872v1
- Date: Sat, 3 Aug 2024 22:33:13 GMT
- Title: Safe Semi-Supervised Contrastive Learning Using In-Distribution Data as Positive Examples
- Authors: Min Gu Kwak, Hyungu Kahng, Seoung Bum Kim,
- Abstract summary: We propose a self-supervised contrastive learning approach to fully exploit a large amount of unlabeled data.
The results show that self-supervised contrastive learning significantly improves classification accuracy.
- Score: 3.4546761246181696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised learning methods have shown promising results in solving many practical problems when only a few labels are available. The existing methods assume that the class distributions of labeled and unlabeled data are equal; however, their performances are significantly degraded in class distribution mismatch scenarios where out-of-distribution (OOD) data exist in the unlabeled data. Previous safe semi-supervised learning studies have addressed this problem by making OOD data less likely to affect training based on labeled data. However, even if the studies effectively filter out the unnecessary OOD data, they can lose the basic information that all data share regardless of class. To this end, we propose to apply a self-supervised contrastive learning approach to fully exploit a large amount of unlabeled data. We also propose a contrastive loss function with coefficient schedule to aggregate as an anchor the labeled negative examples of the same class into positive examples. To evaluate the performance of the proposed method, we conduct experiments on image classification datasets - CIFAR-10, CIFAR-100, Tiny ImageNet, and CIFAR-100+Tiny ImageNet - under various mismatch ratios. The results show that self-supervised contrastive learning significantly improves classification accuracy. Moreover, aggregating the in-distribution examples produces better representation and consequently further improves classification accuracy.
Related papers
- CLAF: Contrastive Learning with Augmented Features for Imbalanced
Semi-Supervised Learning [40.5117833362268]
Semi-supervised learning and contrastive learning have been progressively combined to achieve better performances in popular applications.
One common manner is assigning pseudo-labels to unlabeled samples and selecting positive and negative samples from pseudo-labeled samples to apply contrastive learning.
We propose Contrastive Learning with Augmented Features (CLAF) to alleviate the scarcity of minority class samples in contrastive learning.
arXiv Detail & Related papers (2023-12-15T08:27:52Z) - FlatMatch: Bridging Labeled Data and Unlabeled Data with Cross-Sharpness
for Semi-Supervised Learning [73.13448439554497]
Semi-Supervised Learning (SSL) has been an effective way to leverage abundant unlabeled data with extremely scarce labeled data.
Most SSL methods are commonly based on instance-wise consistency between different data transformations.
We propose FlatMatch which minimizes a cross-sharpness measure to ensure consistent learning performance between the two datasets.
arXiv Detail & Related papers (2023-10-25T06:57:59Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
Open-set semi-supervised learning (Open-set SSL) considers a more practical scenario, where unlabeled data and test data contain new categories (outliers) not observed in labeled data (inliers)
We introduce evidential deep learning (EDL) as an outlier detector to quantify different types of uncertainty, and design different uncertainty metrics for self-training and inference.
We propose a novel adaptive negative optimization strategy, making EDL more tailored to the unlabeled dataset containing both inliers and outliers.
arXiv Detail & Related papers (2023-03-21T09:07:15Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
Full-reference (FR) image quality assessment (IQA) evaluates the visual quality of a distorted image by measuring its perceptual difference with pristine-quality reference.
Unlabeled data can be easily collected from an image degradation or restoration process, making it encouraging to exploit unlabeled training data to boost FR-IQA performance.
In this paper, we suggest to incorporate semi-supervised and positive-unlabeled (PU) learning for exploiting unlabeled data while mitigating the adverse effect of outliers.
arXiv Detail & Related papers (2022-04-19T09:10:06Z) - Improving Contrastive Learning on Imbalanced Seed Data via Open-World
Sampling [96.8742582581744]
We present an open-world unlabeled data sampling framework called Model-Aware K-center (MAK)
MAK follows three simple principles: tailness, proximity, and diversity.
We demonstrate that MAK can consistently improve both the overall representation quality and the class balancedness of the learned features.
arXiv Detail & Related papers (2021-11-01T15:09:41Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
Anomaly detection (AD) has various applications across domains, from manufacturing to healthcare.
In this work, we focus on unsupervised AD problems whose entire training data are unlabeled and may contain both normal and anomalous samples.
To tackle this problem, we build a robust one-class classification framework via data refinement.
We show that our method outperforms state-of-the-art one-class classification method by 6.3 AUC and 12.5 average precision.
arXiv Detail & Related papers (2021-06-11T01:36:08Z) - SimPLE: Similar Pseudo Label Exploitation for Semi-Supervised
Classification [24.386165255835063]
A common classification task situation is where one has a large amount of data available for training, but only a small portion is with class labels.
The goal of semi-supervised training, in this context, is to improve classification accuracy by leverage information from a large amount of unlabeled data.
We propose a novel unsupervised objective that focuses on the less studied relationship between the high confidence unlabeled data that are similar to each other.
Our proposed SimPLE algorithm shows significant performance gains over previous algorithms on CIFAR-100 and Mini-ImageNet, and is on par with the state-of-the-art methods
arXiv Detail & Related papers (2021-03-30T23:48:06Z) - MixPUL: Consistency-based Augmentation for Positive and Unlabeled
Learning [8.7382177147041]
We propose a simple yet effective data augmentation method, coinedalgo, based on emphconsistency regularization.
algoincorporates supervised and unsupervised consistency training to generate augmented data.
We show thatalgoachieves an averaged improvement of classification error from 16.49 to 13.09 on the CIFAR-10 dataset across different positive data amount.
arXiv Detail & Related papers (2020-04-20T15:43:33Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
We show that detecting and relabelling certain OOD instances, rather than discarding them, can have a positive effect on learning.
The proposed method is shown to improve the performance of convolutional neural networks by a significant margin.
arXiv Detail & Related papers (2020-02-11T21:08:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.