CLAF: Contrastive Learning with Augmented Features for Imbalanced
Semi-Supervised Learning
- URL: http://arxiv.org/abs/2312.09598v2
- Date: Sun, 24 Dec 2023 05:16:24 GMT
- Title: CLAF: Contrastive Learning with Augmented Features for Imbalanced
Semi-Supervised Learning
- Authors: Bowen Tao, Lan Li, Xin-Chun Li, De-Chuan Zhan
- Abstract summary: Semi-supervised learning and contrastive learning have been progressively combined to achieve better performances in popular applications.
One common manner is assigning pseudo-labels to unlabeled samples and selecting positive and negative samples from pseudo-labeled samples to apply contrastive learning.
We propose Contrastive Learning with Augmented Features (CLAF) to alleviate the scarcity of minority class samples in contrastive learning.
- Score: 40.5117833362268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the advantages of leveraging unlabeled data and learning meaningful
representations, semi-supervised learning and contrastive learning have been
progressively combined to achieve better performances in popular applications
with few labeled data and abundant unlabeled data. One common manner is
assigning pseudo-labels to unlabeled samples and selecting positive and
negative samples from pseudo-labeled samples to apply contrastive learning.
However, the real-world data may be imbalanced, causing pseudo-labels to be
biased toward the majority classes and further undermining the effectiveness of
contrastive learning. To address the challenge, we propose Contrastive Learning
with Augmented Features (CLAF). We design a class-dependent feature
augmentation module to alleviate the scarcity of minority class samples in
contrastive learning. For each pseudo-labeled sample, we select positive and
negative samples from labeled data instead of unlabeled data to compute
contrastive loss. Comprehensive experiments on imbalanced image classification
datasets demonstrate the effectiveness of CLAF in the context of imbalanced
semi-supervised learning.
Related papers
- Safe Semi-Supervised Contrastive Learning Using In-Distribution Data as Positive Examples [3.4546761246181696]
We propose a self-supervised contrastive learning approach to fully exploit a large amount of unlabeled data.
The results show that self-supervised contrastive learning significantly improves classification accuracy.
arXiv Detail & Related papers (2024-08-03T22:33:13Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Robust Positive-Unlabeled Learning via Noise Negative Sample
Self-correction [48.929877651182885]
Learning from positive and unlabeled data is known as positive-unlabeled (PU) learning in literature.
We propose a new robust PU learning method with a training strategy motivated by the nature of human learning.
arXiv Detail & Related papers (2023-08-01T04:34:52Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
Full-reference (FR) image quality assessment (IQA) evaluates the visual quality of a distorted image by measuring its perceptual difference with pristine-quality reference.
Unlabeled data can be easily collected from an image degradation or restoration process, making it encouraging to exploit unlabeled training data to boost FR-IQA performance.
In this paper, we suggest to incorporate semi-supervised and positive-unlabeled (PU) learning for exploiting unlabeled data while mitigating the adverse effect of outliers.
arXiv Detail & Related papers (2022-04-19T09:10:06Z) - Uncertainty-aware Pseudo-label Selection for Positive-Unlabeled Learning [10.014356492742074]
We propose to tackle the issues of imbalanced datasets and model calibration in a positive-unlabeled learning setting.
By boosting the signal from the minority class, pseudo-labeling expands the labeled dataset with new samples from the unlabeled set.
Within a series of experiments, PUUPL yields substantial performance gains in highly imbalanced settings.
arXiv Detail & Related papers (2022-01-31T12:55:47Z) - Disentangling Sampling and Labeling Bias for Learning in Large-Output
Spaces [64.23172847182109]
We show that different negative sampling schemes implicitly trade-off performance on dominant versus rare labels.
We provide a unified means to explicitly tackle both sampling bias, arising from working with a subset of all labels, and labeling bias, which is inherent to the data due to label imbalance.
arXiv Detail & Related papers (2021-05-12T15:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.