Personalized Federated Learning on Heterogeneous and Long-Tailed Data via Expert Collaborative Learning
- URL: http://arxiv.org/abs/2408.02019v1
- Date: Sun, 4 Aug 2024 13:11:49 GMT
- Title: Personalized Federated Learning on Heterogeneous and Long-Tailed Data via Expert Collaborative Learning
- Authors: Fengling Lv, Xinyi Shang, Yang Zhou, Yiqun Zhang, Mengke Li, Yang Lu,
- Abstract summary: The data collected in real-world scenarios is likely to follow a long-tailed distribution.
The presence of long-tailed data can significantly degrade the performance of PFL models.
We propose a method called Expert Collaborative Learning (ECL) to tackle this problem.
- Score: 12.008179288136166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized Federated Learning (PFL) aims to acquire customized models for each client without disclosing raw data by leveraging the collective knowledge of distributed clients. However, the data collected in real-world scenarios is likely to follow a long-tailed distribution. For example, in the medical domain, it is more common for the number of general health notes to be much larger than those specifically relatedto certain diseases. The presence of long-tailed data can significantly degrade the performance of PFL models. Additionally, due to the diverse environments in which each client operates, data heterogeneity is also a classic challenge in federated learning. In this paper, we explore the joint problem of global long-tailed distribution and data heterogeneity in PFL and propose a method called Expert Collaborative Learning (ECL) to tackle this problem. Specifically, each client has multiple experts, and each expert has a different training subset, which ensures that each class, especially the minority classes, receives sufficient training. Multiple experts collaborate synergistically to produce the final prediction output. Without special bells and whistles, the vanilla ECL outperforms other state-of-the-art PFL methods on several benchmark datasets under different degrees of data heterogeneity and long-tailed distribution.
Related papers
- FedReMa: Improving Personalized Federated Learning via Leveraging the Most Relevant Clients [13.98392319567057]
Federated Learning (FL) is a distributed machine learning paradigm that achieves a globally robust model through decentralized computation and periodic model synthesis.
Despite their wide adoption, existing FL and PFL works have yet to comprehensively address the class-imbalance issue.
We propose FedReMa, an efficient PFL algorithm that can tackle class-imbalance by utilizing an adaptive inter-client co-learning approach.
arXiv Detail & Related papers (2024-11-04T05:44:28Z) - FedLF: Adaptive Logit Adjustment and Feature Optimization in Federated Long-Tailed Learning [5.23984567704876]
Federated learning offers a paradigm to the challenge of preserving privacy in distributed machine learning.
Traditional approach fails to address the phenomenon of class-wise bias in global long-tailed data.
New method FedLF introduces three modifications in the local training phase: adaptive logit adjustment, continuous class centred optimization, and feature decorrelation.
arXiv Detail & Related papers (2024-09-18T16:25:29Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - FedSampling: A Better Sampling Strategy for Federated Learning [81.85411484302952]
Federated learning (FL) is an important technique for learning models from decentralized data in a privacy-preserving way.
Existing FL methods usually uniformly sample clients for local model learning in each round.
We propose a novel data uniform sampling strategy for federated learning (FedSampling)
arXiv Detail & Related papers (2023-06-25T13:38:51Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Personalized Federated Learning on Long-Tailed Data via Adversarial
Feature Augmentation [24.679535905451758]
PFL aims to learn personalized models for each client based on the knowledge across all clients in a privacy-preserving manner.
Existing PFL methods assume that the underlying global data across all clients are uniformly distributed without considering the long-tail distribution.
We propose Federated Learning with Adversarial Feature Augmentation (FedAFA) to address this joint problem in PFL.
arXiv Detail & Related papers (2023-03-27T13:00:20Z) - FedABC: Targeting Fair Competition in Personalized Federated Learning [76.9646903596757]
Federated learning aims to collaboratively train models without accessing their client's local private data.
We propose a novel and generic PFL framework termed Federated Averaging via Binary Classification, dubbed FedABC.
In particular, we adopt the one-vs-all'' training strategy in each client to alleviate the unfair competition between classes.
arXiv Detail & Related papers (2023-02-15T03:42:59Z) - Exploiting Personalized Invariance for Better Out-of-distribution
Generalization in Federated Learning [13.246981646250518]
This paper presents a general dual-regularized learning framework to explore the personalized invariance, compared with the exsiting personalized federated learning methods.
We show that our method is superior over the existing federated learning and invariant learning methods, in diverse out-of-distribution and Non-IID data cases.
arXiv Detail & Related papers (2022-11-21T08:17:03Z) - FedSLD: Federated Learning with Shared Label Distribution for Medical
Image Classification [6.0088002781256185]
We propose Federated Learning with Shared Label Distribution (FedSLD) for classification tasks.
FedSLD adjusts the contribution of each data sample to the local objective during optimization given knowledge of the distribution.
Our results show that FedSLD achieves better convergence performance than the compared leading FL optimization algorithms.
arXiv Detail & Related papers (2021-10-15T21:38:25Z) - Multi-Center Federated Learning [62.32725938999433]
Federated learning (FL) can protect data privacy in distributed learning.
It merely collects local gradients from users without access to their data.
We propose a novel multi-center aggregation mechanism.
arXiv Detail & Related papers (2021-08-19T12:20:31Z) - Federated Mixture of Experts [94.25278695272874]
FedMix is a framework that allows us to train an ensemble of specialized models.
We show that users with similar data characteristics select the same members and therefore share statistical strength.
arXiv Detail & Related papers (2021-07-14T14:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.