Latency-Aware Resource Allocation for Mobile Edge Generation and Computing via Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2408.02047v2
- Date: Sat, 19 Oct 2024 05:42:42 GMT
- Title: Latency-Aware Resource Allocation for Mobile Edge Generation and Computing via Deep Reinforcement Learning
- Authors: Yinyu Wu, Xuhui Zhang, Jinke Ren, Huijun Xing, Yanyan Shen, Shuguang Cui,
- Abstract summary: We investigate the joint communication, computation, and the AIGC resource allocation problem in an MEGC system.
A latency problem is first formulated to enhance the quality of service for mobile users.
We propose a new deep reinforcement learning-based algorithm to solve it efficiently.
- Score: 46.98737813782529
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the integration of mobile edge computing (MEC) and generative artificial intelligence (GAI) technology has given rise to a new area called mobile edge generation and computing (MEGC), which offers mobile users heterogeneous services such as task computing and content generation. In this letter, we investigate the joint communication, computation, and the AIGC resource allocation problem in an MEGC system. A latency minimization problem is first formulated to enhance the quality of service for mobile users. Due to the strong coupling of the optimization variables, we propose a new deep reinforcement learning-based algorithm to solve it efficiently. Numerical results demonstrate that the proposed algorithm can achieve lower latency than two baseline algorithms.
Related papers
- Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services.
These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge.
We introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics.
arXiv Detail & Related papers (2024-11-03T07:01:13Z) - Mobility and Cost Aware Inference Accelerating Algorithm for Edge
Intelligence [24.512525338942158]
The edge intelligence (EI) has been widely applied recently. Spliting the model between device, edge server, and cloud can improve the performance of EI greatly.
The model segmentation without user mobility has been investigated deeply by previous works.
We propose mobility and cost aware model segmentation and resource allocation algorithm for accelerating the inference at edge.
arXiv Detail & Related papers (2023-12-27T10:04:02Z) - Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks [18.723955271182007]
This paper proposes a joint optimization algorithm for offloading decisions, computation time, and diffusion steps of the diffusion models in the reverse diffusion stage.
Experimental results conclusively demonstrate that the proposed algorithm achieves superior joint optimization performance compared to the baselines.
arXiv Detail & Related papers (2023-12-11T08:36:27Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - Multi-Agent Reinforcement Learning Based Coded Computation for Mobile Ad
Hoc Computing [6.94732606123235]
We introduce a novel coded computation scheme based on multi-agent reinforcement learning (MARL)
MARL has many promising features such as adaptability to network changes, high efficiency and robustness to uncertain system disturbances.
Comprehensive simulation studies demonstrate that the proposed approach can outperform state-of-the-art distributed computing schemes.
arXiv Detail & Related papers (2021-04-15T15:50:57Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
A joint task, spectrum, and transmit power allocation problem is investigated for a wireless network.
The proposed algorithm can reduce the number of iterations needed for convergence and the maximal delay among all users by up to 18% and 11.1% compared to the standard Q-learning algorithm.
arXiv Detail & Related papers (2020-07-20T13:46:42Z) - Multi-agent Reinforcement Learning for Resource Allocation in IoT
networks with Edge Computing [16.129649374251088]
It's challenging for end users to offload computation due to their massive requirements on spectrum and resources.
In this paper, we investigate offloading mechanism with resource allocation in IoT edge computing networks by formulating it as a game.
arXiv Detail & Related papers (2020-04-05T20:59:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.