論文の概要: 3D Single-object Tracking in Point Clouds with High Temporal Variation
- arxiv url: http://arxiv.org/abs/2408.02049v2
- Date: Thu, 5 Sep 2024 06:55:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 01:49:25.760668
- Title: 3D Single-object Tracking in Point Clouds with High Temporal Variation
- Title(参考訳): 高時間変動を有する点雲における3次元物体追跡
- Authors: Qiao Wu, Kun Sun, Pei An, Mathieu Salzmann, Yanning Zhang, Jiaqi Yang,
- Abstract要約: 点雲の高時間変動は3次元単一物体追跡の鍵となる課題である(3D SOT)
既存のアプローチは、点雲の形状変化と、隣接するフレームを横切る物体の運動が滑らかであるという仮定に依存している。
HVTrackと呼ばれる高時間変動の点群における3次元SOTのための新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 79.5863632942935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The high temporal variation of the point clouds is the key challenge of 3D single-object tracking (3D SOT). Existing approaches rely on the assumption that the shape variation of the point clouds and the motion of the objects across neighboring frames are smooth, failing to cope with high temporal variation data. In this paper, we present a novel framework for 3D SOT in point clouds with high temporal variation, called HVTrack. HVTrack proposes three novel components to tackle the challenges in the high temporal variation scenario: 1) A Relative-Pose-Aware Memory module to handle temporal point cloud shape variations; 2) a Base-Expansion Feature Cross-Attention module to deal with similar object distractions in expanded search areas; 3) a Contextual Point Guided Self-Attention module for suppressing heavy background noise. We construct a dataset with high temporal variation (KITTI-HV) by setting different frame intervals for sampling in the KITTI dataset. On the KITTI-HV with 5 frame intervals, our HVTrack surpasses the state-of-the-art tracker CXTracker by 11.3%/15.7% in Success/Precision.
- Abstract(参考訳): 点雲の高時間変動は、3D単一物体追跡(3D SOT)の鍵となる課題である。
既存のアプローチは、点雲の形状変化と、隣接するフレームを横切る物体の運動が滑らかであり、高時間変動データに対処できないという仮定に依存している。
本稿では,HVTrackと呼ばれる高時間変動の点群における3次元SOTのための新しいフレームワークを提案する。
HVTrackは、高時間変動シナリオにおける課題に取り組むために、3つの新しいコンポーネントを提案する。
1) 時間点雲の形状の変動を処理する相対型対応メモリモジュール。
2) 拡張検索領域における類似の物体の散逸に対処する基地拡張機能横断モジュール
3)重い背景雑音を抑えるためのコンテキストポイントガイド自己注意モジュール。
我々は、KITTIデータセットのサンプリングのために異なるフレーム間隔を設定することで、高時間変動(KITTI-HV)を持つデータセットを構築する。
5フレーム間隔のKITTI-HVでは、私たちのHVTrackは、最先端のトラッカーであるCXTrackerを11.3%/15.7%上回っている。
関連論文リスト
- SeqTrack3D: Exploring Sequence Information for Robust 3D Point Cloud
Tracking [26.405519771454102]
本稿では,SeqTrack3DというトラッカーとSequence-to-Sequenceトラッキングパラダイムを導入し,連続フレーム間の目標運動をキャプチャする。
本手法は, 重要点の少ないシーンにおいても, 歴史的ボックスからの位置情報を有効活用することにより, ロバストなトラッキングを実現する。
大規模なデータセットで実施された実験は、SeqTrack3Dが新しい最先端のパフォーマンスを実現することを示している。
論文 参考訳(メタデータ) (2024-02-26T02:14:54Z) - PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object Detection [66.94819989912823]
時間的3次元物体検出を効率的に行うために,長期記憶が可能な点トラジェクトリ変換器を提案する。
私たちは、メモリバンクのストレージ要件を最小限に抑えるために、現在のフレームオブジェクトのポイントクラウドとその履歴トラジェクトリを入力として使用します。
大規模データセットに対する広範な実験を行い、我々のアプローチが最先端の手法に対してうまく機能することを実証した。
論文 参考訳(メタデータ) (2023-12-13T18:59:13Z) - STTracker: Spatio-Temporal Tracker for 3D Single Object Tracking [11.901758708579642]
ポイントクラウドによる3Dオブジェクトのトラッキングは、3Dコンピュータビジョンにおいて重要なタスクである。
以前の方法は、通常、最後の2つのフレームを入力し、前のフレームのテンプレートポイントクラウドと現在のフレームの検索エリアポイントクラウドを使用する。
論文 参考訳(メタデータ) (2023-06-30T07:25:11Z) - TransPillars: Coarse-to-Fine Aggregation for Multi-Frame 3D Object
Detection [47.941714033657675]
ポイントクラウドを用いた3Dオブジェクト検出は、自律走行とロボット工学に広く応用されているため、注目を集めている。
連続点雲フレームの時間的特徴を生かしたトランスピラース(TransPillars)を設計する。
提案するTransPillarsは,既存のマルチフレーム検出手法と比較して最先端性能を実現する。
論文 参考訳(メタデータ) (2022-08-04T15:41:43Z) - Learning Spatial and Temporal Variations for 4D Point Cloud Segmentation [0.39373541926236766]
フレーム間の時間的情報は3次元シーンの知覚に重要な知識をもたらすと我々は主張する。
本研究では,4次元点雲の時間変動を捉えるために,時間変動対応モジュールと時間変化対応のボクセル点精製器を設計する。
論文 参考訳(メタデータ) (2022-07-11T07:36:26Z) - IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding
Alignment [58.8330387551499]
我々は、点方向軌跡(すなわち滑らかな曲線)の推定として問題を定式化する。
本稿では,学習した時間的一貫性の助けを借りて問題を解消する,エンドツーエンドのディープラーニングフレームワークであるIDEA-Netを提案する。
各種点群における本手法の有効性を実証し, 定量的かつ視覚的に, 最先端の手法に対する大幅な改善を観察する。
論文 参考訳(メタデータ) (2022-03-22T10:14:08Z) - M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object
Detection with Transformers [78.48081972698888]
M3DeTRは、マルチスケールのフィーチャーピラミッドに基づいて、異なるポイントクラウド表現と異なる機能スケールを組み合わせたものです。
M3DeTRは、複数のポイントクラウド表現、機能スケール、およびトランスを使用してポイントクラウド間の相互関係を同時にモデル化する最初のアプローチです。
論文 参考訳(メタデータ) (2021-04-24T06:48:23Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。