論文の概要: EOL: Transductive Few-Shot Open-Set Recognition by Enhancing Outlier Logits
- arxiv url: http://arxiv.org/abs/2408.02052v1
- Date: Sun, 4 Aug 2024 15:00:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 15:25:25.456079
- Title: EOL: Transductive Few-Shot Open-Set Recognition by Enhancing Outlier Logits
- Title(参考訳): EOL:outlier Logitsの強化によるトランスダクティブFew-Shotオープンセット認識
- Authors: Mateusz Ochal, Massimiliano Patacchiola, Malik Boudiaf, Sen Wang,
- Abstract要約: Few-Shot Learningでは、モデルがクエリセットから見えないオブジェクトを認識するように訓練されている。
本研究では,オープンセットのFew-Shot認識における,よりニュアンスで実践的な課題について検討する。
- 参考スコア(独自算出の注目度): 16.081748213657825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Few-Shot Learning (FSL), models are trained to recognise unseen objects from a query set, given a few labelled examples from a support set. In standard FSL, models are evaluated on query instances sampled from the same class distribution of the support set. In this work, we explore the more nuanced and practical challenge of Open-Set Few-Shot Recognition (OSFSL). Unlike standard FSL, OSFSL incorporates unknown classes into the query set, thereby requiring the model not only to classify known classes but also to identify outliers. Building on the groundwork laid by previous studies, we define a novel transductive inference technique that leverages the InfoMax principle to exploit the unlabelled query set. We called our approach the Enhanced Outlier Logit (EOL) method. EOL refines class prototype representations through model calibration, effectively balancing the inlier-outlier ratio. This calibration enhances pseudo-label accuracy for the query set and improves the optimisation objective within the transductive inference process. We provide a comprehensive empirical evaluation demonstrating that EOL consistently surpasses traditional methods, recording performance improvements ranging from approximately $+1.3%$ to $+6.3%$ across a variety of classification and outlier detection metrics and benchmarks, even in the presence of inlier-outlier imbalance.
- Abstract(参考訳): FSL(Few-Shot Learning)では、モデルがクエリセットから見えないオブジェクトを認識するように訓練されている。
標準FSLでは、モデルは、サポートセットの同じクラス分布からサンプリングされたクエリインスタンスで評価される。
本研究では,Open-Set Few-Shot Recognition (OSFSL) のよりニュアンスで実践的な課題について検討する。
標準のFSLとは異なり、OSFSLは未知のクラスをクエリセットに組み込むため、既知のクラスを分類するだけでなく、外れ値を特定する必要がある。
従来の研究では,InfoMaxの原理を生かした新しいトランスダクティブ推論手法を定義した。
われわれはこの手法を拡張アウトリエ・ロジット(EOL)手法と呼んだ。
EOLはモデルのキャリブレーションを通じてクラスプロトタイプの表現を洗練し、イリヤ・アウトリア比を効果的にバランスさせる。
この校正により、クエリセットの擬似ラベル精度が向上し、トランスダクティブ推論プロセスにおける最適化目標が向上する。
我々は、EOLが従来の手法を一貫して上回り、様々な分類と外乱検出指標とベンチマークにおいて約$+1.3%$から$+6.3%$までのパフォーマンス改善を記録できることを実証した総合的な経験的評価を提供する。
関連論文リスト
- Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
遠隔教師付きラベルに分類器のトレーニング力学に基づいて重みを割り当てる新しいコトレーニング手法を提案する。
予測された信頼度に対する任意のしきい値に基づいてサンプルをフィルタリングするのではなく、重要重みを割り当てることにより、自動ラベル付きデータの使用を最大化する。
提案手法は、遠隔監視ベースラインに対するマクロF1の1.5%の改善と、他の強力なSSLベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-06-20T18:35:47Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - SSB: Simple but Strong Baseline for Boosting Performance of Open-Set
Semi-Supervised Learning [106.46648817126984]
本稿では,挑戦的で現実的なオープンセットSSL設定について検討する。
目標は、inlierを正しく分類し、outlierを検知することである。
信頼度の高い疑似ラベル付きデータを組み込むことで、不整合分類性能を大幅に改善できることが判明した。
論文 参考訳(メタデータ) (2023-11-17T15:14:40Z) - Enlarging Instance-specific and Class-specific Information for Open-set
Action Recognition [47.69171542776917]
よりリッチなセマンティックな多様性を持つ機能は、同じ不確実性スコアの下で、オープンセットのパフォーマンスを著しく向上させることができる。
よりIS情報を保持するために、インスタンスの分散を同じクラス内に保持するために、新しいPSLフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-03-25T04:07:36Z) - Complementary Labels Learning with Augmented Classes [22.460256396941528]
補完ラベル学習 (Complementary Labels Learning, CLL) は、プライベート質問分類やオンライン学習など、現実世界の多くのタスクに現れる。
CLLAC(Complementary Labels Learning with Augmented Classs)と呼ばれる新しい問題設定を提案する。
ラベルのないデータを用いて,CLLACの分類リスクの偏りのない推定手法を提案する。
論文 参考訳(メタデータ) (2022-11-19T13:55:27Z) - Model-Agnostic Few-Shot Open-Set Recognition [36.97433312193586]
我々はFew-Shot Open-Set Recognition (FSOSR) 問題に取り組む。
既存のモデルにプラグイン可能なモデルに依存しない推論手法の開発に注力する。
オープン・セット・トランスダクティブ・インフォメーション・最大化手法OSTIMを提案する。
論文 参考訳(メタデータ) (2022-06-18T16:27:59Z) - Few-shot Learning via Dependency Maximization and Instance Discriminant
Analysis [21.8311401851523]
そこで本研究では,カテゴリ毎にラベル付きデータが極めて少ない新しいオブジェクトの認識をモデルが学習する,数ショットの学習問題について検討する。
本稿では,少数ショット処理に伴うラベルなしデータを利用して,少数ショット性能を向上させるための簡単な手法を提案する。
論文 参考訳(メタデータ) (2021-09-07T02:19:01Z) - OpenMatch: Open-set Consistency Regularization for Semi-supervised
Learning with Outliers [71.08167292329028]
我々はOpenMatchと呼ばれる新しいオープンセットセミスーパーバイザードラーニング(OSSL)アプローチを提案する。
OpenMatchは、1-vs-all(OVA)分類器に基づいた新規検出とFixMatchを統合する。
3つのデータセットで最先端のパフォーマンスを実現し、CIFAR10の未ラベルデータで見えないアウトリーチを検出する上で、完全な教師付きモデルよりも優れています。
論文 参考訳(メタデータ) (2021-05-28T23:57:15Z) - Self-supervised Detransformation Autoencoder for Representation Learning
in Open Set Recognition [0.0]
オープンセット認識問題に対する自己超越手法であるDetransformation Autoencoder (DTAE)を提案する。
提案手法は,未知のクラスを検出し,未知のクラスを分類する上で,大きな利益をもたらす。
論文 参考訳(メタデータ) (2021-05-28T02:45:57Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
多くの現実世界では、多数のラベル付きサンプルの収集は不可能です。
少ないショット学習はこの問題に対処するための主要なアプローチであり、目的は限られた数のサンプルの存在下で新しいカテゴリに迅速に適応することです。
幾何学的変換の一般集合に対する等分散と不変性を同時に強制する新しい訓練機構を提案する。
論文 参考訳(メタデータ) (2021-03-01T21:14:33Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
拡張埋め込み(CPLAE)モデルを用いた新しいコントラスト型プロトタイプ学習を提案する。
クラスプロトタイプをアンカーとして、CPLは、同じクラスのクエリサンプルを、異なるクラスのサンプルを、さらに遠くに引き出すことを目的としている。
いくつかのベンチマークによる大規模な実験により,提案したCPLAEが新たな最先端を実現することが示された。
論文 参考訳(メタデータ) (2021-01-23T13:22:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。