View-consistent Object Removal in Radiance Fields
- URL: http://arxiv.org/abs/2408.02100v1
- Date: Sun, 4 Aug 2024 17:57:23 GMT
- Title: View-consistent Object Removal in Radiance Fields
- Authors: Yiren Lu, Jing Ma, Yu Yin,
- Abstract summary: Radiance Fields (RFs) have emerged as a crucial technology for 3D scene representation.
Current methods rely on per-frame 2D image inpainting, which often fails to maintain consistency across views.
We introduce a novel RF editing pipeline that significantly enhances consistency by requiring the inpainting of only a single reference image.
- Score: 14.195400035176815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radiance Fields (RFs) have emerged as a crucial technology for 3D scene representation, enabling the synthesis of novel views with remarkable realism. However, as RFs become more widely used, the need for effective editing techniques that maintain coherence across different perspectives becomes evident. Current methods primarily depend on per-frame 2D image inpainting, which often fails to maintain consistency across views, thus compromising the realism of edited RF scenes. In this work, we introduce a novel RF editing pipeline that significantly enhances consistency by requiring the inpainting of only a single reference image. This image is then projected across multiple views using a depth-based approach, effectively reducing the inconsistencies observed with per-frame inpainting. However, projections typically assume photometric consistency across views, which is often impractical in real-world settings. To accommodate realistic variations in lighting and viewpoint, our pipeline adjusts the appearance of the projected views by generating multiple directional variants of the inpainted image, thereby adapting to different photometric conditions. Additionally, we present an effective and robust multi-view object segmentation approach as a valuable byproduct of our pipeline. Extensive experiments demonstrate that our method significantly surpasses existing frameworks in maintaining content consistency across views and enhancing visual quality. More results are available at https://vulab-ai.github.io/View-consistent_Object_Removal_in_Radiance_Fields.
Related papers
- MAIR++: Improving Multi-view Attention Inverse Rendering with Implicit Lighting Representation [17.133440382384578]
We propose a scene-level inverse rendering framework that uses multi-view images to decompose the scene into geometry, SVBRDF, and 3D spatially-varying lighting.
A novel framework called Multi-view Attention Inverse Rendering (MAIR) was recently introduced to improve the quality of scene-level inverse rendering.
arXiv Detail & Related papers (2024-08-13T08:04:23Z) - NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content.
We address these issues with an approach based on ray tracing.
Instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts rays from these points and traces them through the NeRF representation to render feature vectors.
arXiv Detail & Related papers (2024-05-23T17:59:57Z) - Consolidating Attention Features for Multi-view Image Editing [126.19731971010475]
We focus on spatial control-based geometric manipulations and introduce a method to consolidate the editing process across various views.
We introduce QNeRF, a neural radiance field trained on the internal query features of the edited images.
We refine the process through a progressive, iterative method that better consolidates queries across the diffusion timesteps.
arXiv Detail & Related papers (2024-02-22T18:50:18Z) - Layered Rendering Diffusion Model for Zero-Shot Guided Image Synthesis [60.260724486834164]
This paper introduces innovative solutions to enhance spatial controllability in diffusion models reliant on text queries.
We present two key innovations: Vision Guidance and the Layered Rendering Diffusion framework.
We apply our method to three practical applications: bounding box-to-image, semantic mask-to-image and image editing.
arXiv Detail & Related papers (2023-11-30T10:36:19Z) - Curved Diffusion: A Generative Model With Optical Geometry Control [56.24220665691974]
The influence of different optical systems on the final scene appearance is frequently overlooked.
This study introduces a framework that intimately integrates a textto-image diffusion model with the particular lens used in image rendering.
arXiv Detail & Related papers (2023-11-29T13:06:48Z) - Holistic Inverse Rendering of Complex Facade via Aerial 3D Scanning [38.72679977945778]
We use multi-view aerial images to reconstruct the geometry, lighting, and material of facades using neural signed distance fields (SDFs)
The experiment demonstrates the superior quality of our method on facade holistic inverse rendering, novel view synthesis, and scene editing compared to state-of-the-art baselines.
arXiv Detail & Related papers (2023-11-20T15:03:56Z) - Multi-Plane Neural Radiance Fields for Novel View Synthesis [5.478764356647437]
Novel view synthesis is a long-standing problem that revolves around rendering frames of scenes from novel camera viewpoints.
In this work, we examine the performance, generalization, and efficiency of single-view multi-plane neural radiance fields.
We propose a new multiplane NeRF architecture that accepts multiple views to improve the synthesis results and expand the viewing range.
arXiv Detail & Related papers (2023-03-03T06:32:55Z) - Light Field Neural Rendering [47.7586443731997]
Methods based on geometric reconstruction need only sparse views, but cannot accurately model non-Lambertian effects.
We introduce a model that combines the strengths and mitigates the limitations of these two directions.
Our model outperforms the state-of-the-art on multiple forward-facing and 360deg datasets.
arXiv Detail & Related papers (2021-12-17T18:58:05Z) - NeRF++: Analyzing and Improving Neural Radiance Fields [117.73411181186088]
Neural Radiance Fields (NeRF) achieve impressive view synthesis results for a variety of capture settings.
NeRF fits multi-layer perceptrons representing view-invariant opacity and view-dependent color volumes to a set of training images.
We address a parametrization issue involved in applying NeRF to 360 captures of objects within large-scale, 3D scenes.
arXiv Detail & Related papers (2020-10-15T03:24:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.