論文の概要: Model Hijacking Attack in Federated Learning
- arxiv url: http://arxiv.org/abs/2408.02131v1
- Date: Sun, 4 Aug 2024 20:02:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 14:56:07.431078
- Title: Model Hijacking Attack in Federated Learning
- Title(参考訳): フェデレーション学習におけるモデルハイジャック攻撃
- Authors: Zheng Li, Siyuan Wu, Ruichuan Chen, Paarijaat Aditya, Istemi Ekin Akkus, Manohar Vanga, Min Zhang, Hao Li, Yang Zhang,
- Abstract要約: HijackFLは、フェデレートラーニングにおけるグローバルモデルに対する、第一級のハイジャック攻撃である。
それは、サーバや良心的なクライアントの通知なしに、グローバルモデルが元のタスクとは異なるタスクを実行するように強制することを目的としています。
4つのベンチマークデータセットと3つの人気のあるモデルについて広範な実験を行う。
- 参考スコア(独自算出の注目度): 19.304332176437363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML), driven by prominent paradigms such as centralized and federated learning, has made significant progress in various critical applications ranging from autonomous driving to face recognition. However, its remarkable success has been accompanied by various attacks. Recently, the model hijacking attack has shown that ML models can be hijacked to execute tasks different from their original tasks, which increases both accountability and parasitic computational risks. Nevertheless, thus far, this attack has only focused on centralized learning. In this work, we broaden the scope of this attack to the federated learning domain, where multiple clients collaboratively train a global model without sharing their data. Specifically, we present HijackFL, the first-of-its-kind hijacking attack against the global model in federated learning. The adversary aims to force the global model to perform a different task (called hijacking task) from its original task without the server or benign client noticing. To accomplish this, unlike existing methods that use data poisoning to modify the target model's parameters, HijackFL searches for pixel-level perturbations based on their local model (without modifications) to align hijacking samples with the original ones in the feature space. When performing the hijacking task, the adversary applies these cloaks to the hijacking samples, compelling the global model to identify them as original samples and predict them accordingly. We conduct extensive experiments on four benchmark datasets and three popular models. Empirical results demonstrate that its attack performance outperforms baselines. We further investigate the factors that affect its performance and discuss possible defenses to mitigate its impact.
- Abstract(参考訳): 機械学習(ML)は、自律運転から顔認識まで、さまざまな重要な応用において大きな進歩を遂げている。
しかし、その顕著な成功には様々な攻撃が伴っている。
近年、モデルハイジャック攻撃により、MLモデルが元のタスクとは異なるタスクを実行するためにハイジャック可能であることが示され、説明責任と寄生的な計算リスクが増大している。
しかし、これまでのところ、この攻撃は集中学習にのみ焦点をあてている。
本研究では,この攻撃の範囲を,複数のクライアントがデータを共有することなく協調的にグローバルモデルをトレーニングするフェデレーション学習領域に広げる。
具体的には,フェデレートラーニングにおける世界モデルに対する初となるハイジャック攻撃であるHijackFLを紹介する。
相手は、サーバや良心的なクライアントの通知なしに、グローバルモデルに元のタスクとは異なるタスク(ハイジャックタスクと呼ばれる)を実行するように強制することを目指している。
これを実現するために、ターゲットモデルのパラメータを変更するためにデータ中毒を使用する既存の方法とは異なり、HijackFLは、ローカルモデル(修正なし)に基づいてピクセルレベルの摂動を探索し、特徴空間内の元のモデルとハイジャックサンプルを整列させる。
ハイジャックタスクを実行する際、敵はこれらのクロークをハイジャックサンプルに適用し、グローバルモデルにそれらを元のサンプルとして識別し、それに応じて予測するように促す。
4つのベンチマークデータセットと3つの人気のあるモデルについて広範な実験を行う。
実証的な結果は、攻撃性能がベースラインを上回っていることを示している。
さらに、その性能に影響を与える要因について検討し、その影響を軽減するための防御の可能性について議論する。
関連論文リスト
- Identify Backdoored Model in Federated Learning via Individual Unlearning [7.200910949076064]
裏口攻撃は、フェデレートラーニング(FL)の堅牢性に重大な脅威をもたらす
FLにおける悪意のあるモデルを特定するために,ローカルモデル上で個別の未学習を利用する手法であるMASAを提案する。
私たちの知る限りでは、FLの悪意あるモデルを特定するために機械学習を活用するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-11-01T21:19:47Z) - Model for Peanuts: Hijacking ML Models without Training Access is Possible [5.005171792255858]
モデルハイジャック(英: Model hijacking)とは、被害者のモデルをハイジャックして元のモデルとは異なるタスクを実行する攻撃である。
本研究では、未知の入力サンプルを分類するために、SnatchMLと呼ばれる推論時にモデルハイジャックを行うための簡単なアプローチを提案する。
最初にメタ学習と呼ぶ新しいアプローチを提案し、モデルが元のデータセットをトレーニングしながら潜在的に悪意のあるタスクを解放するのに役立つように設計した。
論文 参考訳(メタデータ) (2024-06-03T18:04:37Z) - Efficient Data-Free Model Stealing with Label Diversity [22.8804507954023]
マシンラーニング・アズ・ア・サービス(ML)は、ユーザがAPI形式で機械学習モデルに問い合わせることを可能にし、価値あるデータに基づいてトレーニングされた高性能モデルによるメリットを享受する機会を提供する。
このインターフェースは機械学習ベースのアプリケーションの増殖を促進する一方で、モデル盗難攻撃のための攻撃面を導入している。
既存のモデル盗難攻撃は、有効性を保ちながら、攻撃想定をデータフリー設定に緩和した。
本稿では,多様性の観点からモデルを盗む問題を再考し,生成したデータサンプルをすべてのクラスに多様性を持たせることが重要なポイントであることを実証する。
論文 参考訳(メタデータ) (2024-03-29T18:52:33Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) は、入力データを歪ませることで、トレーニングされたニューラルネットワークの堅牢性をテストするために使用される。
本稿では, 自己教師型, 計算的経済的な手法を用いて, 対逆例を生成する手法を提案する。
我々の実験は、この手法が様々なモデル、目に見えないデータカテゴリ、さらには防御されたモデルで有効であることを一貫して実証している。
論文 参考訳(メタデータ) (2023-10-05T17:34:47Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
フェデレートラーニング(FL)は、グローバル機械学習モデルを、参加する労働者のセット間で分散されたローカルデータから学習することを可能にする。
FLは、学習モデルの完全性に悪影響を及ぼす標的の毒殺攻撃に対して脆弱である。
FL標的攻撃に対抗する手段として,textitFL-Defenderを提案する。
論文 参考訳(メタデータ) (2022-07-02T16:04:46Z) - MPAF: Model Poisoning Attacks to Federated Learning based on Fake
Clients [51.973224448076614]
本稿では,MPAF と呼ばれる Fake クライアントをベースとした最初のモデルポジショニング攻撃を提案する。
MPAFは、たとえ古典的な防御とノルムクリッピングが採用されたとしても、グローバルモデルのテスト精度を著しく低下させることができる。
論文 参考訳(メタデータ) (2022-03-16T14:59:40Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。