RICA2: Rubric-Informed, Calibrated Assessment of Actions
- URL: http://arxiv.org/abs/2408.02138v2
- Date: Tue, 6 Aug 2024 19:27:12 GMT
- Title: RICA2: Rubric-Informed, Calibrated Assessment of Actions
- Authors: Abrar Majeedi, Viswanatha Reddy Gajjala, Satya Sai Srinath Namburi GNVV, Yin Li,
- Abstract summary: We present RICA2 - a deep probabilistic model that score rubric and accounts for prediction uncertainty for action quality assessment (AQA)
We demonstrate that our method establishes new state of the art on public benchmarks, including FineDiving, MTL-AQA, and JIGSAWS, with superior performance in score prediction and uncertainty calibration.
- Score: 8.641411594566714
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to quantify how well an action is carried out, also known as action quality assessment (AQA), has attracted recent interest in the vision community. Unfortunately, prior methods often ignore the score rubric used by human experts and fall short of quantifying the uncertainty of the model prediction. To bridge the gap, we present RICA^2 - a deep probabilistic model that integrates score rubric and accounts for prediction uncertainty for AQA. Central to our method lies in stochastic embeddings of action steps, defined on a graph structure that encodes the score rubric. The embeddings spread probabilistic density in the latent space and allow our method to represent model uncertainty. The graph encodes the scoring criteria, based on which the quality scores can be decoded. We demonstrate that our method establishes new state of the art on public benchmarks, including FineDiving, MTL-AQA, and JIGSAWS, with superior performance in score prediction and uncertainty calibration. Our code is available at https://abrarmajeedi.github.io/rica2_aqa/
Related papers
- Leveraging Uncertainty Estimates To Improve Classifier Performance [4.4951754159063295]
Binary classification involves predicting the label of an instance based on whether the model score for the positive class exceeds a threshold chosen based on the application requirements.
However, model scores are often not aligned with the true positivity rate.
This is especially true when the training involves a differential sampling across classes or there is distributional drift between train and test settings.
arXiv Detail & Related papers (2023-11-20T12:40:25Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
We propose and study a triptych of diagnostic graphics that focus on distinct and complementary aspects of forecast performance.
The reliability diagram addresses calibration, the receiver operating characteristic (ROC) curve diagnoses discrimination ability, and the Murphy diagram visualizes overall predictive performance and value.
arXiv Detail & Related papers (2023-01-25T19:35:23Z) - Uncertainty-Driven Action Quality Assessment [67.20617610820857]
We propose a novel probabilistic model, named Uncertainty-Driven AQA (UD-AQA), to capture the diversity among multiple judge scores.
We generate the estimation of uncertainty for each prediction, which is employed to re-weight AQA regression loss.
Our proposed method achieves competitive results on three benchmarks including the Olympic events MTL-AQA and FineDiving, and the surgical skill JIGSAWS datasets.
arXiv Detail & Related papers (2022-07-29T07:21:15Z) - Comparing Bayesian Models for Organ Contouring in Headand Neck
Radiotherapy [6.499117567077562]
We investigate two Bayesian models for auto-contouring, DropOut and FlipOut, using a quantitative measure - expected calibration error (ECE) and a qualitative measure - region-based accuracy-vs-uncertainty (R-AvU) graphs.
We show that DropOut-DICE has the highest ECE, while Dropout-CE and FlipOut-CE have the lowest ECE.
Experiments are conducted on the MICCAI2015 Head and Neck Challenge and on the DeepMindTCIA CT dataset using three models: DropOut-DICE, Dropout-CE and FlipOut-CE
arXiv Detail & Related papers (2021-11-01T14:46:25Z) - Distribution-free uncertainty quantification for classification under
label shift [105.27463615756733]
We focus on uncertainty quantification (UQ) for classification problems via two avenues.
We first argue that label shift hurts UQ, by showing degradation in coverage and calibration.
We examine these techniques theoretically in a distribution-free framework and demonstrate their excellent practical performance.
arXiv Detail & Related papers (2021-03-04T20:51:03Z) - Bayes DistNet -- A Robust Neural Network for Algorithm Runtime
Distribution Predictions [1.8275108630751844]
Randomized algorithms are used in many state-of-the-art solvers for constraint satisfaction problems (CSP) and Boolean satisfiability (SAT) problems.
Previous state-of-the-art methods directly try to predict a fixed parametric distribution that the input instance follows.
This new model achieves robust predictive performance in the low observation setting, as well as handling censored observations.
arXiv Detail & Related papers (2020-12-14T01:15:39Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z) - Uncertainty-aware Score Distribution Learning for Action Quality
Assessment [91.05846506274881]
We propose an uncertainty-aware score distribution learning (USDL) approach for action quality assessment (AQA)
Specifically, we regard an action as an instance associated with a score distribution, which describes the probability of different evaluated scores.
Under the circumstance where fine-grained score labels are available, we devise a multi-path uncertainty-aware score distributions learning (MUSDL) method to explore the disentangled components of a score.
arXiv Detail & Related papers (2020-06-13T15:41:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.