Leveraging Uncertainty Estimates To Improve Classifier Performance
- URL: http://arxiv.org/abs/2311.11723v1
- Date: Mon, 20 Nov 2023 12:40:25 GMT
- Title: Leveraging Uncertainty Estimates To Improve Classifier Performance
- Authors: Gundeep Arora, Srujana Merugu, Anoop Saladi, Rajeev Rastogi
- Abstract summary: Binary classification involves predicting the label of an instance based on whether the model score for the positive class exceeds a threshold chosen based on the application requirements.
However, model scores are often not aligned with the true positivity rate.
This is especially true when the training involves a differential sampling across classes or there is distributional drift between train and test settings.
- Score: 4.4951754159063295
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Binary classification involves predicting the label of an instance based on
whether the model score for the positive class exceeds a threshold chosen based
on the application requirements (e.g., maximizing recall for a precision
bound). However, model scores are often not aligned with the true positivity
rate. This is especially true when the training involves a differential
sampling across classes or there is distributional drift between train and test
settings. In this paper, we provide theoretical analysis and empirical evidence
of the dependence of model score estimation bias on both uncertainty and score
itself. Further, we formulate the decision boundary selection in terms of both
model score and uncertainty, prove that it is NP-hard, and present algorithms
based on dynamic programming and isotonic regression. Evaluation of the
proposed algorithms on three real-world datasets yield 25%-40% gain in recall
at high precision bounds over the traditional approach of using model score
alone, highlighting the benefits of leveraging uncertainty.
Related papers
- Awareness of uncertainty in classification using a multivariate model and multi-views [1.3048920509133808]
The proposed model regularizes uncertain predictions, and trains to calculate both the predictions and their uncertainty estimations.
Given the multi-view predictions together with their uncertainties and confidences, we proposed several methods to calculate final predictions.
The proposed methodology was tested using CIFAR-10 dataset with clean and noisy labels.
arXiv Detail & Related papers (2024-04-16T06:40:51Z) - Model Agnostic Explainable Selective Regression via Uncertainty
Estimation [15.331332191290727]
This paper presents a novel approach to selective regression that utilizes model-agnostic non-parametric uncertainty estimation.
Our proposed framework showcases superior performance compared to state-of-the-art selective regressors.
We implement our selective regression method in the open-source Python package doubt and release the code used to reproduce our experiments.
arXiv Detail & Related papers (2023-11-15T17:40:48Z) - Robust Outlier Rejection for 3D Registration with Variational Bayes [70.98659381852787]
We develop a novel variational non-local network-based outlier rejection framework for robust alignment.
We propose a voting-based inlier searching strategy to cluster the high-quality hypothetical inliers for transformation estimation.
arXiv Detail & Related papers (2023-04-04T03:48:56Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
arXiv Detail & Related papers (2022-12-14T17:34:11Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Calibrated Selective Classification [34.08454890436067]
We develop a new approach to selective classification in which we propose a method for rejecting examples with "uncertain" uncertainties.
We present a framework for learning selectively calibrated models, where a separate selector network is trained to improve the selective calibration error of a given base model.
We demonstrate the empirical effectiveness of our approach on multiple image classification and lung cancer risk assessment tasks.
arXiv Detail & Related papers (2022-08-25T13:31:09Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
We propose a tiny deep neural network of which partial layers are iteratively exploited for refining its previous estimations.
We employ learned gating criteria to decide whether to exit from the weight-sharing loop, allowing per-sample adaptation in our model.
Our method consistently outperforms state-of-the-art 2D/3D hand pose estimation approaches in terms of both accuracy and efficiency for widely used benchmarks.
arXiv Detail & Related papers (2021-11-11T23:31:34Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Achieving Equalized Odds by Resampling Sensitive Attributes [13.114114427206678]
We present a flexible framework for learning predictive models that approximately satisfy the equalized odds notion of fairness.
This differentiable functional is used as a penalty driving the model parameters towards equalized odds.
We develop a formal hypothesis test to detect whether a prediction rule violates this property, the first such test in the literature.
arXiv Detail & Related papers (2020-06-08T00:18:34Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
Partial-label learning (PLL) is a typical weakly supervised learning problem, where each training instance is equipped with a set of candidate labels among which only one is the true label.
Most existing methods elaborately designed as constrained optimizations that must be solved in specific manners, making their computational complexity a bottleneck for scaling up to big data.
This paper proposes a novel framework of classifier with flexibility on the model and optimization algorithm.
arXiv Detail & Related papers (2020-02-19T08:35:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.