論文の概要: Unsupervised Domain Adaption Harnessing Vision-Language Pre-training
- arxiv url: http://arxiv.org/abs/2408.02192v1
- Date: Mon, 5 Aug 2024 02:37:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 14:45:49.804220
- Title: Unsupervised Domain Adaption Harnessing Vision-Language Pre-training
- Title(参考訳): 教師なしドメイン適応ハラスメントビジョンランゲージ事前学習
- Authors: Wenlve Zhou, Zhiheng Zhou,
- Abstract要約: 本稿では、教師なしドメイン適応(UDA)におけるビジョンランゲージ事前学習モデルのパワーを活用することに焦点を当てる。
クロスモーダル知識蒸留(CMKD)と呼ばれる新しい手法を提案する。
提案手法は,従来のベンチマーク手法よりも優れている。
- 参考スコア(独自算出の注目度): 4.327763441385371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses two vital challenges in Unsupervised Domain Adaptation (UDA) with a focus on harnessing the power of Vision-Language Pre-training (VLP) models. Firstly, UDA has primarily relied on ImageNet pre-trained models. However, the potential of VLP models in UDA remains largely unexplored. The rich representation of VLP models holds significant promise for enhancing UDA tasks. To address this, we propose a novel method called Cross-Modal Knowledge Distillation (CMKD), leveraging VLP models as teacher models to guide the learning process in the target domain, resulting in state-of-the-art performance. Secondly, current UDA paradigms involve training separate models for each task, leading to significant storage overhead and impractical model deployment as the number of transfer tasks grows. To overcome this challenge, we introduce Residual Sparse Training (RST) exploiting the benefits conferred by VLP's extensive pre-training, a technique that requires minimal adjustment (approximately 0.1\%$\sim$0.5\%) of VLP model parameters to achieve performance comparable to fine-tuning. Combining CMKD and RST, we present a comprehensive solution that effectively leverages VLP models for UDA tasks while reducing storage overhead for model deployment. Furthermore, CMKD can serve as a baseline in conjunction with other methods like FixMatch, enhancing the performance of UDA. Our proposed method outperforms existing techniques on standard benchmarks. Our code will be available at: https://github.com/Wenlve-Zhou/VLP-UDA.
- Abstract(参考訳): 本稿では,Unsupervised Domain Adaptation(UDA)における2つの重要な課題について,ビジョンランゲージ事前学習(VLP)モデルのパワーを活用することに焦点を当てた。
第一に、UDAは主にImageNetの事前訓練モデルに依存している。
しかし、UDAにおけるVLPモデルの可能性はほとんど未解明のままである。
VLPモデルの豊かな表現は、UDAタスクの強化に大きく貢献する。
そこで本研究では,教師モデルとしてVLPモデルを活用して,対象領域における学習プロセスを指導し,最先端のパフォーマンスを実現する,Cross-Modal Knowledge Distillation (CMKD) という新しい手法を提案する。
第2に、現在のUDAパラダイムでは、各タスクごとに別々のモデルをトレーニングすることで、転送タスクの数が増加するにつれて、大きなストレージオーバーヘッドと非現実的なモデルデプロイメントが発生します。
この課題を克服するために、我々は、VLPモデルパラメータの最小調整(約0.1\%$\sim$0.5\%)を必要とする、VLPの広範な事前トレーニングによる利点を生かしたResidual Sparse Training (RST)を導入する。
CMKDとRTTを組み合わせることで、UDAタスクのVLPモデルを効果的に活用し、モデル展開のストレージオーバーヘッドを低減できる包括的ソリューションを提案する。
さらに、CMKDはFixMatchのような他のメソッドとともにベースラインとして機能し、UDAのパフォーマンスを向上させることができる。
提案手法は,従来のベンチマーク手法よりも優れている。
私たちのコードは、https://github.com/Wenlve-Zhou/VLP-UDA.comで公開されます。
関連論文リスト
- Meta-Learning Adaptable Foundation Models [37.458141335750696]
本稿では,PEFTを組み込んだメタラーニングフレームワークを導入し,未知のタスクに容易に適応可能なモデルを学習する。
この設定では、適応可能なパラメータの集合を見つけるための標準再訓練の準最適性を示す。
次に、これらの理論的洞察をRoBERTaモデルの再訓練に適用し、ConvAI2データセット内の会話の継続を予測する。
論文 参考訳(メタデータ) (2024-10-29T17:24:18Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - Towards Seamless Adaptation of Pre-trained Models for Visual Place Recognition [72.35438297011176]
視覚的位置認識のための事前学習モデル(VPR)のシームレスな適応を実現する新しい手法を提案する。
具体的には、地域を識別するための有意義なランドマークに焦点を当てたグローバルな特徴とローカルな特徴の両方を得るために、ハイブリッド適応法を設計する。
実験結果から,本手法はトレーニングデータやトレーニング時間が少なく,最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-02-22T12:55:01Z) - FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning [21.693779973263172]
本稿では,特徴識別アライメント(FD-Align)と呼ばれる微調整手法を提案する。
本手法は,突発的特徴の一貫性を保ち,モデルの一般化可能性を高めることを目的としている。
一度微調整すると、モデルは既存のメソッドとシームレスに統合され、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-23T17:12:01Z) - Parameter and Computation Efficient Transfer Learning for
Vision-Language Pre-trained Models [79.34513906324727]
本稿では,視覚言語事前学習モデルのためのパラメータと効率的な伝達学習(PCETL)を提案する。
そこで本研究では,新しい動的アーキテクチャスキップ(DAS)アプローチを効果的PCETLに適用する。
論文 参考訳(メタデータ) (2023-09-04T09:34:33Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
非教師なしドメイン適応(UDA)は、ソースドメインからラベルのないデータを持つターゲットドメインへの知識の転送に非常に効果的であることが証明されている。
オープンセットドメイン適応(ODA)は、トレーニングフェーズ中にこれらのクラスを識別する潜在的なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-30T11:38:46Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
視覚言語による事前学習モデルでは、事前学習タスクと下流タスクのギャップを埋めるために、しばしば多くの学習可能なトークンを必要とする。
本稿では,効率的なVL転送学習を実現するために,APT(Approximated Prompt Tuning)アプローチを提案する。
論文 参考訳(メタデータ) (2023-06-27T05:43:47Z) - Guiding The Last Layer in Federated Learning with Pre-Trained Models [18.382057374270143]
フェデレートラーニング(FL)は、データを共有することなく、多数の参加者にまたがってモデルをトレーニングできる新興パラダイムである。
NCM(Nearest Class Means)を用いた分類ヘッドの適合は,既存の提案よりも正確に,桁違いに効率的に行えることを示す。
論文 参考訳(メタデータ) (2023-06-06T18:02:02Z) - ZhichunRoad at Amazon KDD Cup 2022: MultiTask Pre-Training for
E-Commerce Product Search [4.220439000486713]
検索結果の質を向上させるために,頑健な多言語モデルを提案する。
事前学習の段階では、mlmタスク、分類タスク、コントラスト学習タスクを採用する。
微調整段階では、自信ある学習、指数的移動平均法(EMA)、対人訓練(FGM)、正規化ドロップアウト戦略(R-Drop)を用いる。
論文 参考訳(メタデータ) (2023-01-31T07:31:34Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
分割・征服フレームワーク(DCF)に基づく二重レベル深層強化学習(DL-DRL)手法を提案する。
特に,上層部DRLモデルにおけるエンコーダ・デコーダ構成ポリシネットワークを設計し,タスクを異なるUAVに割り当てる。
また、低レベルDRLモデルにおける別の注意に基づくポリシーネットワークを利用して、各UAVの経路を構築し、実行されたタスク数を最大化する。
論文 参考訳(メタデータ) (2022-08-04T04:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。