論文の概要: Source-Free Domain-Invariant Performance Prediction
- arxiv url: http://arxiv.org/abs/2408.02209v1
- Date: Mon, 5 Aug 2024 03:18:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 14:45:49.783578
- Title: Source-Free Domain-Invariant Performance Prediction
- Title(参考訳): ソースフリードメイン不変性能予測
- Authors: Ekaterina Khramtsova, Mahsa Baktashmotlagh, Guido Zuccon, Xi Wang, Mathieu Salzmann,
- Abstract要約: 本研究では,不確実性に基づく推定を主軸としたソースフリー手法を提案する。
オブジェクト認識データセットのベンチマーク実験により、既存のソースベースの手法は、限られたソースサンプルの可用性で不足していることが判明した。
提案手法は,現在の最先端のソースフリーおよびソースベース手法よりも優れており,ドメイン不変性能推定の有効性が確認されている。
- 参考スコア(独自算出の注目度): 68.39031800809553
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurately estimating model performance poses a significant challenge, particularly in scenarios where the source and target domains follow different data distributions. Most existing performance prediction methods heavily rely on the source data in their estimation process, limiting their applicability in a more realistic setting where only the trained model is accessible. The few methods that do not require source data exhibit considerably inferior performance. In this work, we propose a source-free approach centred on uncertainty-based estimation, using a generative model for calibration in the absence of source data. We establish connections between our approach for unsupervised calibration and temperature scaling. We then employ a gradient-based strategy to evaluate the correctness of the calibrated predictions. Our experiments on benchmark object recognition datasets reveal that existing source-based methods fall short with limited source sample availability. Furthermore, our approach significantly outperforms the current state-of-the-art source-free and source-based methods, affirming its effectiveness in domain-invariant performance estimation.
- Abstract(参考訳): 特にソースとターゲットドメインが異なるデータ分散に従うシナリオでは、モデルのパフォーマンスを正確に見積もることが大きな課題となる。
既存のパフォーマンス予測手法の多くは、推定プロセスのソースデータに大きく依存しており、トレーニングされたモデルのみがアクセス可能なより現実的な環境での適用性を制限する。
ソースデータを必要としない数少ない方法は、かなり性能が劣っている。
本研究では,不確実性に基づく推定を主軸としたソースフリー手法を提案する。
我々は,非教師なしキャリブレーションと温度スケーリングの連携を確立する。
次に、偏差予測の正しさを評価するために勾配に基づく戦略を用いる。
オブジェクト認識データセットのベンチマーク実験により、既存のソースベースの手法は、限られたソースサンプルの可用性で不足していることが判明した。
さらに,提案手法は,現在の最先端のソースフリーおよびソースベース手法よりも優れており,ドメイン不変性能推定の有効性が確認されている。
関連論文リスト
- A Conformal Approach to Feature-based Newsvendor under Model Misspecification [2.801095519296785]
共形予測にインスパイアされたモデルフリーで分散フリーなフレームワークを提案する。
ワシントンD.C.のCapital Bikeshareプログラムのシミュレーションデータと実世界のデータセットを用いて,我々のフレームワークを検証する。
論文 参考訳(メタデータ) (2024-12-17T18:34:43Z) - Unsupervised Accuracy Estimation of Deep Visual Models using
Domain-Adaptive Adversarial Perturbation without Source Samples [1.1852406625172216]
本研究では,未ラベルのターゲットデータに対して,ソースデータにアクセスせずにモデル精度を推定する新しいフレームワークを提案する。
提案手法は,ソース仮説と対象の擬似ラベル関数との相違率を測定する。
提案するソースフリーフレームワークは,分散シフトの困難なシナリオに効果的に対処し,トレーニングにソースデータやラベルを必要とする既存の手法より優れている。
論文 参考訳(メタデータ) (2023-07-19T15:33:11Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
ソースフリードメイン適応(SFDA)は、事前訓練されたソースモデルのみを使用することで、未ラベルのターゲットデータセットに分類器を適応させることを目的としている。
本稿では、ソースモデル予測の不確実性を定量化し、ターゲット適応の導出に利用することを提案する。
論文 参考訳(メタデータ) (2022-08-16T08:03:30Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Unsupervised Adaptation of Semantic Segmentation Models without Source
Data [14.66682099621276]
意味的セグメンテーションのためのソースデータにアクセスすることなく、ソースモデルの教師なしドメイン適応という新しい問題を考察する。
本稿では,ソースモデルから知識を抽出する自己学習手法を提案する。
我々のフレームワークは、ターゲットデータに直接ソースモデルを適用した場合と比較して、大幅なパフォーマンス向上を実現できます。
論文 参考訳(メタデータ) (2021-12-04T15:13:41Z) - A Prototype-Oriented Framework for Unsupervised Domain Adaptation [52.25537670028037]
メモリと計算効率のよい確率的フレームワークを提供し、クラスプロトタイプを抽出し、ターゲットとなる特徴をそれらと整合させる。
本稿では,単一ソース,マルチソース,クラス不均衡,ソースプライベートドメイン適応など,幅広いシナリオにおいて,本手法の汎用性を実証する。
論文 参考訳(メタデータ) (2021-10-22T19:23:22Z) - Unsupervised Multi-source Domain Adaptation Without Access to Source
Data [58.551861130011886]
Unsupervised Domain Adaptation (UDA)は、ラベル付きソースドメインから知識を転送することで、ラベル付きドメインの予測モデルを学ぶことを目的としている。
本稿では,ソースモデルと適切な重み付けを自動的に組み合わせ,少なくとも最良のソースモデルと同等の性能を発揮する新しい効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-05T10:45:12Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。