論文の概要: Large Language Model Aided QoS Prediction for Service Recommendation
- arxiv url: http://arxiv.org/abs/2408.02223v2
- Date: Fri, 16 Aug 2024 03:18:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 17:49:17.927584
- Title: Large Language Model Aided QoS Prediction for Service Recommendation
- Title(参考訳): サービスレコメンデーションのための大規模言語モデルを用いたQoS予測
- Authors: Huiying Liu, Zekun Zhang, Honghao Li, Qilin Wu, Yiwen Zhang,
- Abstract要約: 大規模言語モデル(LLM)は近年急速に改善され、広範囲のアプリケーションで使用されている。
本稿では,LLMを用いて記述文によるWebユーザやサービスの属性から有用な情報を抽出する,大規模言語モデル支援予測(llmQoS)モデルを提案する。
llmQoSは、予測問題に固有のデータスポーシティ問題を克服し、同等のベースラインモデルを一貫して上回ることを示す。
- 参考スコア(独自算出の注目度): 7.544690825814887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have seen rapid improvement in the recent years, and have been used in a wider range of applications. After being trained on large text corpus, LLMs obtain the capability of extracting rich features from textual data. Such capability is potentially useful for the web service recommendation task, where the web users and services have intrinsic attributes that can be described using natural language sentences and are useful for recommendation. In this paper, we explore the possibility and practicality of using LLMs for web service recommendation. We propose the large language model aided QoS prediction (llmQoS) model, which use LLMs to extract useful information from attributes of web users and services via descriptive sentences. This information is then used in combination with the QoS values of historical interactions of users and services, to predict QoS values for any given user-service pair. On the WSDream dataset, llmQoS is shown to overcome the data sparsity issue inherent to the QoS prediction problem, and outperforms comparable baseline models consistently.
- Abstract(参考訳): 大規模言語モデル(LLM)は近年急速に改善され、広範囲のアプリケーションで使用されている。
大規模なテキストコーパスで訓練した後、LLMはテキストデータからリッチな特徴を抽出する能力を得る。
このような機能は、Webユーザやサービスが自然言語文を使って記述できる固有の属性を持ち、レコメンデーションに有用であるWebサービスレコメンデーションタスクにおいて、潜在的に有用である。
本稿では, Web サービスレコメンデーションにおける LLM の利用可能性と実用性について検討する。
本稿では,LLMを用いて記述文によるWebユーザやサービスの属性から有用な情報を抽出する大規模言語モデルQoS予測(llmQoS)モデルを提案する。
この情報は、ユーザとサービスの歴史的なインタラクションのQoS値と組み合わせて、任意のユーザとサービスのペアのQoS値を予測する。
WSDreamデータセットでは、llmQoSはQoS予測問題に固有のデータ空間問題を克服し、同等のベースラインモデルを一貫して上回ることを示す。
関連論文リスト
- Improving Pinterest Search Relevance Using Large Language Models [15.24121687428178]
我々はLarge Language Models (LLM) を検索関連モデルに統合する。
提案手法では,生成的視覚言語モデルから抽出したキャプションを含むコンテンツ表現とともに検索クエリを使用する。
LLMをベースとしたモデルからリアルタイム可観測モデルアーキテクチャと特徴を抽出する。
論文 参考訳(メタデータ) (2024-10-22T16:29:33Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
大規模言語モデル(LLM)は、データサイエンスの標準ツールに匹敵するパフォーマンスで、最も予測可能な機能を選択することができる。
以上の結果から,LSMはトレーニングに最適な機能を選択するだけでなく,そもそもどの機能を収集すべきかを判断する上でも有用である可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-02T22:23:40Z) - ELCoRec: Enhance Language Understanding with Co-Propagation of Numerical and Categorical Features for Recommendation [38.64175351885443]
大規模言語モデルは自然言語処理(NLP)領域で栄えている。
レコメンデーション指向の微調整モデルによって示された知性にもかかわらず、LLMはユーザーの行動パターンを完全に理解するのに苦労している。
既存の作業は、その重要な情報を導入することなく、与えられたテキストデータに対してのみLLMを微調整するだけである。
論文 参考訳(メタデータ) (2024-06-27T01:37:57Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - GenRec: Large Language Model for Generative Recommendation [41.22833600362077]
本稿では,テキストデータに基づく大規模言語モデル(LLM)を用いたレコメンデーションシステムに対する革新的なアプローチを提案する。
GenRecはLLMの理解機能を使ってコンテキストを解釈し、ユーザの好みを学習し、関連するレコメンデーションを生成する。
本研究は,レコメンデーションシステムの領域に革命をもたらす上で,LLMに基づくジェネレーティブレコメンデーションの可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-07-02T02:37:07Z) - Evaluating Embedding APIs for Information Retrieval [51.24236853841468]
ドメインの一般化と多言語検索における既存のセマンティック埋め込みAPIの機能を評価する。
BM25の結果をAPIを使って再ランク付けすることは、予算に優しいアプローチであり、英語でもっとも効果的である。
非英語検索では、再ランク付けは結果を改善するが、BM25のハイブリッドモデルは高いコストで機能する。
論文 参考訳(メタデータ) (2023-05-10T16:40:52Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5シリーズのモデルは、様々なNLPタスクにまたがる顕著な少数ショットとゼロショットの能力を示している。
本稿では,2段階のアプローチを取り入れたAnnoLLMを提案する。
我々はAnnoLLMを用いた対話型情報検索データセットを構築した。
論文 参考訳(メタデータ) (2023-03-29T17:03:21Z) - Offline RL for Natural Language Generation with Implicit Language Q
Learning [87.76695816348027]
ユーザ指定タスクの完了に関して、大きな言語モデルは矛盾する可能性がある。
本稿では,RLのフレキシブル・ユーティリティ・フレームワークと教師あり学習能力を組み合わせた新しいRL手法を提案する。
ILQLの実証的な検証に加えて、オフラインRLが自然言語生成設定で有用となるような、詳細な経験的分析状況も提示する。
論文 参考訳(メタデータ) (2022-06-05T18:38:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。