Contrastive Learning and Abstract Concepts: The Case of Natural Numbers
- URL: http://arxiv.org/abs/2408.02247v5
- Date: Wed, 11 Sep 2024 14:21:29 GMT
- Title: Contrastive Learning and Abstract Concepts: The Case of Natural Numbers
- Authors: Daniel N. Nissani,
- Abstract summary: We show that contrastive learning can be trained to count at a glance with high accuracy both at human as well as at super-human ranges.
We compare this with the results of a trained-to-count at a glance supervised learning (SL) neural network scheme of similar architecture.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive Learning (CL) has been successfully applied to classification and other downstream tasks related to concrete concepts, such as objects contained in the ImageNet dataset. No attempts seem to have been made so far in applying this promising scheme to more abstract entities. A prominent example of these could be the concept of (discrete) Quantity. CL can be frequently interpreted as a self-supervised scheme guided by some profound and ubiquitous conservation principle (e.g. conservation of identity in object classification tasks). In this introductory work we apply a suitable conservation principle to the semi-abstract concept of natural numbers by which discrete quantities can be estimated or predicted. We experimentally show, by means of a toy problem, that contrastive learning can be trained to count at a glance with high accuracy both at human as well as at super-human ranges.. We compare this with the results of a trained-to-count at a glance supervised learning (SL) neural network scheme of similar architecture. We show that both schemes exhibit similar good performance on baseline experiments, where the distributions of the training and testing stages are equal. Importantly, we demonstrate that in some generalization scenarios, where training and testing distributions differ, CL boasts more robust and much better error performance.
Related papers
- Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - Uncertainty in Contrastive Learning: On the Predictability of Downstream
Performance [7.411571833582691]
We study whether the uncertainty of such a representation can be quantified for a single datapoint in a meaningful way.
We show that this goal can be achieved by directly estimating the distribution of the training data in the embedding space.
arXiv Detail & Related papers (2022-07-19T15:44:59Z) - Chaos is a Ladder: A New Theoretical Understanding of Contrastive
Learning via Augmentation Overlap [64.60460828425502]
We propose a new guarantee on the downstream performance of contrastive learning.
Our new theory hinges on the insight that the support of different intra-class samples will become more overlapped under aggressive data augmentations.
We propose an unsupervised model selection metric ARC that aligns well with downstream accuracy.
arXiv Detail & Related papers (2022-03-25T05:36:26Z) - Towards the Generalization of Contrastive Self-Supervised Learning [11.889992921445849]
We present a theoretical explanation of how contrastive self-supervised pre-trained models generalize to downstream tasks.
We further explore SimCLR and Barlow Twins, which are two canonical contrastive self-supervised methods.
arXiv Detail & Related papers (2021-11-01T07:39:38Z) - Weakly Supervised Contrastive Learning [68.47096022526927]
We introduce a weakly supervised contrastive learning framework (WCL) to tackle this issue.
WCL achieves 65% and 72% ImageNet Top-1 Accuracy using ResNet50, which is even higher than SimCLRv2 with ResNet101.
arXiv Detail & Related papers (2021-10-10T12:03:52Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - A Low Rank Promoting Prior for Unsupervised Contrastive Learning [108.91406719395417]
We construct a novel probabilistic graphical model that effectively incorporates the low rank promoting prior into the framework of contrastive learning.
Our hypothesis explicitly requires that all the samples belonging to the same instance class lie on the same subspace with small dimension.
Empirical evidences show that the proposed algorithm clearly surpasses the state-of-the-art approaches on multiple benchmarks.
arXiv Detail & Related papers (2021-08-05T15:58:25Z) - About contrastive unsupervised representation learning for
classification and its convergence [2.6782615615913343]
We build a theoretical framework around contrastive learning which guarantees for its performance can be proven.
We provide extensions of these results to training with multiple negative samples and for multiway classification.
We also provide convergence guarantees for the minimization of the contrastive training error with gradient descent of an overparametrized deep neural encoder.
arXiv Detail & Related papers (2020-12-02T10:08:57Z) - Unsupervised Feature Learning by Cross-Level Instance-Group
Discrimination [68.83098015578874]
We integrate between-instance similarity into contrastive learning, not directly by instance grouping, but by cross-level discrimination.
CLD effectively brings unsupervised learning closer to natural data and real-world applications.
New state-of-the-art on self-supervision, semi-supervision, and transfer learning benchmarks, and beats MoCo v2 and SimCLR on every reported performance.
arXiv Detail & Related papers (2020-08-09T21:13:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.