SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models
- URL: http://arxiv.org/abs/2408.02302v1
- Date: Mon, 5 Aug 2024 08:24:24 GMT
- Title: SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models
- Authors: Shujuan Zhao, Lingfeng Qiao, Kangyang Luo, Qian-Wen Zhang, Junru Lu, Di Yin,
- Abstract summary: Large language models (LLMs) have become powerful tools for advancing natural language processing applications in the financial industry.
We propose a novel large language model specifically designed for the Chinese financial domain, named SNFinLLM.
SNFinLLM excels in domain-specific tasks such as answering questions, summarizing financial research reports, analyzing sentiment, and executing financial calculations.
- Score: 6.639972934967109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have become powerful tools for advancing natural language processing applications in the financial industry. However, existing financial LLMs often face challenges such as hallucinations or superficial parameter training, resulting in suboptimal performance, particularly in financial computing and machine reading comprehension (MRC). To address these issues, we propose a novel large language model specifically designed for the Chinese financial domain, named SNFinLLM. SNFinLLM excels in domain-specific tasks such as answering questions, summarizing financial research reports, analyzing sentiment, and executing financial calculations. We then perform the supervised fine-tuning (SFT) to enhance the model's proficiency across various financial domains. Specifically, we gather extensive financial data and create a high-quality instruction dataset composed of news articles, professional papers, and research reports of finance domain. Utilizing both domain-specific and general datasets, we proceed with continuous pre-training on an established open-source base model, resulting in SNFinLLM-base. Following this, we engage in supervised fine-tuning (SFT) to bolster the model's capability across multiple financial tasks. Crucially, we employ a straightforward Direct Preference Optimization (DPO) method to better align the model with human preferences. Extensive experiments conducted on finance benchmarks and our evaluation dataset demonstrate that SNFinLLM markedly outperforms other state-of-the-art financial language models. For more details, check out our demo video here: https://www.youtube.com/watch?v=GYT-65HZwus.
Related papers
- FinMTEB: Finance Massive Text Embedding Benchmark [18.990655668481075]
We introduce the Finance Massive Text Embedding Benchmark (FinMTEB), a specialized counterpart to MTEB designed for the financial domain.
FinMTEB comprises 64 financial domain-specific embedding datasets across 7 tasks.
We show three key findings: (1) performance on general-purpose benchmarks shows limited correlation with financial domain tasks; (2) domain-adapted models consistently outperform their general-purpose counterparts; and (3) surprisingly, a simple Bag-of-Words (BoW) approach outperforms sophisticated dense embeddings in financial Semantic Textual Similarity tasks.
arXiv Detail & Related papers (2025-02-16T04:23:52Z) - Demystifying Domain-adaptive Post-training for Financial LLMs [79.581577578952]
FINDAP is a systematic and fine-grained investigation into domain adaptive post-training of large language models (LLMs)
Our approach consists of four key components: FinCap, FinRec, FinTrain and FinEval.
The resulting model, Llama-Fin, achieves state-of-the-art performance across a wide range of financial tasks.
arXiv Detail & Related papers (2025-01-09T04:26:15Z) - Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications [90.67346776473241]
Large language models (LLMs) have advanced financial applications, yet they often lack sufficient financial knowledge and struggle with tasks involving multi-modal inputs like tables and time series data.
We introduce textitOpen-FinLLMs, a series of Financial LLMs that embed comprehensive financial knowledge into text, tables, and time-series data.
We also present FinLLaVA, a multimodal LLM trained with 1.43M image-text instructions to handle complex financial data types.
arXiv Detail & Related papers (2024-08-20T16:15:28Z) - NumLLM: Numeric-Sensitive Large Language Model for Chinese Finance [15.662858834827444]
FinLLMs exhibit unsatisfactory performance in understanding financial text when numeric variables are involved in questions.
We propose numeric-sensitive large language model (NumLLM) for Chinese finance.
Experiments on financial question-answering benchmark show that NumLLM can boost the performance of the foundation model.
arXiv Detail & Related papers (2024-05-01T15:17:27Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Large Language Model Adaptation for Financial Sentiment Analysis [2.0499240875882]
Generalist language models tend to fall short in tasks specifically tailored for finance.
Two foundation models with less than 1.5B parameters have been adapted using a wide range of strategies.
We show that small LLMs have comparable performance to larger scale models, while being more efficient in terms of parameters and data.
arXiv Detail & Related papers (2024-01-26T11:04:01Z) - DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple
Experts Fine-tuning [74.99318727786337]
We propose Multiple Experts Fine-tuning Framework to build a financial large language model (LLM)
We build a financial instruction-tuning dataset named DISC-FIN-SFT, including instruction samples of four categories (consulting, NLP tasks, computing and retrieval-augmented generation)
Evaluations conducted on multiple benchmarks demonstrate that our model performs better than baseline models in various financial scenarios.
arXiv Detail & Related papers (2023-10-23T11:33:41Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z) - WHEN FLUE MEETS FLANG: Benchmarks and Large Pre-trained Language Model
for Financial Domain [42.093876880881886]
We propose a novel domain specific Financial LANGuage model (FLANG)
It uses financial keywords and phrases for better masking, together with span boundary objective and in-filing objective.
Our models, code and benchmark data are publicly available on Github and Huggingface.
arXiv Detail & Related papers (2022-10-31T18:35:18Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
Multiple time series such as financial indicators, stock prices and exchange rates are strongly coupled due to their dependence on the latent state of the market.
We focus on learning the relationships among financial time series by modelling them through a multi-output Gaussian process.
arXiv Detail & Related papers (2020-02-11T19:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.