Large Language Model Adaptation for Financial Sentiment Analysis
- URL: http://arxiv.org/abs/2401.14777v1
- Date: Fri, 26 Jan 2024 11:04:01 GMT
- Title: Large Language Model Adaptation for Financial Sentiment Analysis
- Authors: Pau Rodriguez Inserte, Mariam Nakhl\'e, Raheel Qader, Gaetan Caillaut
and Jingshu Liu
- Abstract summary: Generalist language models tend to fall short in tasks specifically tailored for finance.
Two foundation models with less than 1.5B parameters have been adapted using a wide range of strategies.
We show that small LLMs have comparable performance to larger scale models, while being more efficient in terms of parameters and data.
- Score: 2.0499240875882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural language processing (NLP) has recently gained relevance within
financial institutions by providing highly valuable insights into companies and
markets' financial documents. However, the landscape of the financial domain
presents extra challenges for NLP, due to the complexity of the texts and the
use of specific terminology. Generalist language models tend to fall short in
tasks specifically tailored for finance, even when using large language models
(LLMs) with great natural language understanding and generative capabilities.
This paper presents a study on LLM adaptation methods targeted at the financial
domain and with high emphasis on financial sentiment analysis. To this purpose,
two foundation models with less than 1.5B parameters have been adapted using a
wide range of strategies. We show that through careful fine-tuning on both
financial documents and instructions, these foundation models can be adapted to
the target domain. Moreover, we observe that small LLMs have comparable
performance to larger scale models, while being more efficient in terms of
parameters and data. In addition to the models, we show how to generate
artificial instructions through LLMs to augment the number of samples of the
instruction dataset.
Related papers
- SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models [6.639972934967109]
Large language models (LLMs) have become powerful tools for advancing natural language processing applications in the financial industry.
We propose a novel large language model specifically designed for the Chinese financial domain, named SNFinLLM.
SNFinLLM excels in domain-specific tasks such as answering questions, summarizing financial research reports, analyzing sentiment, and executing financial calculations.
arXiv Detail & Related papers (2024-08-05T08:24:24Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - Revolutionizing Finance with LLMs: An Overview of Applications and
Insights [47.11391223936608]
Large Language Models (LLMs) like ChatGPT have seen considerable advancements and have been applied in diverse fields.
These models are being utilized for automating financial report generation, forecasting market trends, analyzing investor sentiment, and offering personalized financial advice.
arXiv Detail & Related papers (2024-01-22T01:06:17Z) - LLM Augmented LLMs: Expanding Capabilities through Composition [56.40953749310957]
CALM -- Composition to Augment Language Models -- introduces cross-attention between models to compose their representations and enable new capabilities.
We illustrate that augmenting PaLM2-S with a smaller model trained on low-resource languages results in an absolute improvement of up to 13% on tasks like translation into English.
When PaLM2-S is augmented with a code-specific model, we see a relative improvement of 40% over the base model for code generation and explanation tasks.
arXiv Detail & Related papers (2024-01-04T18:53:01Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Is ChatGPT a Financial Expert? Evaluating Language Models on Financial
Natural Language Processing [22.754757518792395]
FinLMEval is a framework for Financial Language Model Evaluation.
This study compares the performance of encoder-only language models and the decoder-only language models.
arXiv Detail & Related papers (2023-10-19T11:43:15Z) - Enhancing Financial Sentiment Analysis via Retrieval Augmented Large
Language Models [11.154814189699735]
Large Language Models (LLMs) pre-trained on extensive corpora have demonstrated superior performance across various NLP tasks.
We introduce a retrieval-augmented LLMs framework for financial sentiment analysis.
Our approach achieves 15% to 48% performance gain in accuracy and F1 score.
arXiv Detail & Related papers (2023-10-06T05:40:23Z) - Large Language Models in Finance: A Survey [12.243277149505364]
Large language models (LLMs) have opened new possibilities for artificial intelligence applications in finance.
Recent advances in large language models (LLMs) have opened new possibilities for artificial intelligence applications in finance.
arXiv Detail & Related papers (2023-09-28T06:04:04Z) - Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of
General-Purpose Large Language Models [18.212210748797332]
We introduce a simple yet effective instruction tuning approach to address these issues.
In the experiment, our approach outperforms state-of-the-art supervised sentiment analysis models.
arXiv Detail & Related papers (2023-06-22T03:56:38Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.