論文の概要: StoDIP: Efficient 3D MRF image reconstruction with deep image priors and stochastic iterations
- arxiv url: http://arxiv.org/abs/2408.02367v1
- Date: Mon, 5 Aug 2024 10:32:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 13:56:46.260204
- Title: StoDIP: Efficient 3D MRF image reconstruction with deep image priors and stochastic iterations
- Title(参考訳): StoDIP:深部画像と確率的反復を用いた高能率3次元MRF画像再構成
- Authors: Perla Mayo, Matteo Cencini, Carolin M. Pirkl, Marion I. Menzel, Michela Tosetti, Bjoern H. Menze, Mohammad Golbabaee,
- Abstract要約: StoDIPは, 3次元MRFイメージングに基いて, 地上構造のないDeep Image Prior (DIP) 再構成を拡張した新しいアルゴリズムである。
健康なボランティアの脳全体をスキャンしたデータセットで、StoDIPは、質的にも質的にも、地道な再建ベースラインよりも優れたパフォーマンスを示した。
- 参考スコア(独自算出の注目度): 3.4453266252081645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic Resonance Fingerprinting (MRF) is a time-efficient approach to quantitative MRI for multiparametric tissue mapping. The reconstruction of quantitative maps requires tailored algorithms for removing aliasing artefacts from the compressed sampled MRF acquisitions. Within approaches found in the literature, many focus solely on two-dimensional (2D) image reconstruction, neglecting the extension to volumetric (3D) scans despite their higher relevance and clinical value. A reason for this is that transitioning to 3D imaging without appropriate mitigations presents significant challenges, including increased computational cost and storage requirements, and the need for large amount of ground-truth (artefact-free) data for training. To address these issues, we introduce StoDIP, a new algorithm that extends the ground-truth-free Deep Image Prior (DIP) reconstruction to 3D MRF imaging. StoDIP employs memory-efficient stochastic updates across the multicoil MRF data, a carefully selected neural network architecture, as well as faster nonuniform FFT (NUFFT) transformations. This enables a faster convergence compared against a conventional DIP implementation without these features. Tested on a dataset of whole-brain scans from healthy volunteers, StoDIP demonstrated superior performance over the ground-truth-free reconstruction baselines, both quantitatively and qualitatively.
- Abstract(参考訳): MRF(Magnetic Resonance Fingerprinting)は、マルチパラメトリック組織マッピングのための定量的MRIのための時間効率なアプローチである。
定量的マップの再構成には、圧縮されたサンプルMRFからアーティファクトを除去するアルゴリズムが必要である。
文献で見られるアプローチの中で、多くのアプローチは2次元(2D)画像再構成にのみ焦点をあてており、高い関連性と臨床的価値にもかかわらず、ボリューム(3D)スキャンへの拡張を無視している。
この理由として、適切な緩和なしに3Dイメージングに移行することは、計算コストとストレージの要求の増加、およびトレーニングのための大量のグランドトルース(アーテファクトフリー)データの必要性など、大きな課題を生じさせる。
これらの問題に対処するため、StoDIPを導入し、DIP再構成を3次元MRFイメージングに拡張した。
StoDIPでは、マルチコイルMRFデータ全体にわたるメモリ効率の高い確率的更新、慎重に選択されたニューラルネットワークアーキテクチャ、高速な非一様FFT(NUFFT)変換を採用している。
これにより、これらの機能なしで従来のDIP実装と比較してより高速な収束が可能となる。
健康なボランティアの脳全体をスキャンしたデータセットを用いて、StoDIPは、質的にも質的にも、地道な再建ベースラインよりも優れたパフォーマンスを示した。
関連論文リスト
- Two-and-a-half Order Score-based Model for Solving 3D Ill-posed Inverse
Problems [7.074380879971194]
本稿では,3次元ボリューム再構成のための2次半順序スコアベースモデル(TOSM)を提案する。
トレーニング期間中、TOSMは2次元空間のデータ分布を学習し、トレーニングの複雑さを低減する。
再構成フェーズでは、TOSMは3方向の相補的なスコアを利用して、3次元空間のデータ分布を更新する。
論文 参考訳(メタデータ) (2023-08-16T17:07:40Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
部分走査は、磁気共鳴イメージング(MRI)データ取得を2次元および3次元の両方で加速する一般的な手法である。
本稿では,Faster Fourier Convolution (FasterFC) と呼ばれる新しい畳み込み演算子を提案する。
2次元加速MRI法であるFasterFC-End-to-End-VarNetは、FasterFCを用いて感度マップと再構成品質を改善する。
k空間領域再構成を誘導する単一グループアルゴリズムを用いたFasterFC-based Single-to-group Network (FAS-Net) と呼ばれる3次元加速MRI法
論文 参考訳(メタデータ) (2023-06-05T13:53:57Z) - Nonlinear Equivariant Imaging: Learning Multi-Parametric Tissue Mapping
without Ground Truth for Compressive Quantitative MRI [4.576908868578682]
高速圧縮フィンガープリント磁気共鳴法(MRF)による組織マッピングの現況
高忠実度基底真理組織マップのトレーニングデータを必要とする欠点を克服した教師付き深層学習の使用。
本稿では,地中深度MRF画像再構成の必要性を解消するために,自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2022-11-23T09:04:14Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGASは、アンダーサンプドトモグラフィビューを合成し、再構成画像中のアーティファクトのエイリアスを緩和する自己教師手法を提案する。
高解像度4Dデータ上でのディープニューラルネットワークの大規模なメモリコストに対処するため、REGASは分散して微分可能なフォワードプロジェクションを可能にする新しいレイパス変換(RPT)を導入した。
論文 参考訳(メタデータ) (2022-08-17T03:42:19Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - DH-GAN: A Physics-driven Untrained Generative Adversarial Network for 3D
Microscopic Imaging using Digital Holography [3.4635026053111484]
デジタルホログラフィー(Digital holography)は、平面波面を持つレーザービームを物体に放出し、ホログラムと呼ばれる回折波形の強度を測定する3Dイメージング技術である。
近年,より正確なホログラフィック処理に深層学習(DL)法が用いられている。
本稿では, 識別ネットワークを用いて, 復元品質のセマンティック尺度を実現する, 生成的敵ネットワークに基づく新しいDLアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:13:45Z) - Accelerating 3D MULTIPLEX MRI Reconstruction with Deep Learning [7.85035197356331]
マルチフリップ角(FA)とマルチエコレックスGRE法(MULTIP MRI)は1つのスキャンで同時に複数のパラメトリック画像を取得するために開発された。
3次元MRIデータ再構築のための深層学習フレームワークを提案する。
提案する深層学習法は,画像品質と再構成時間において良好な性能を示す。
論文 参考訳(メタデータ) (2021-05-17T21:06:14Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。