論文の概要: The NPU-ASLP System Description for Visual Speech Recognition in CNVSRC 2024
- arxiv url: http://arxiv.org/abs/2408.02369v3
- Date: Thu, 12 Sep 2024 15:46:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 21:10:23.575899
- Title: The NPU-ASLP System Description for Visual Speech Recognition in CNVSRC 2024
- Title(参考訳): CNVSRC 2024における視覚音声認識のためのNPU-ASLPシステム記述
- Authors: He Wang, Lei Xie,
- Abstract要約: 本稿では,第2回中国連続視覚音声認識チャレンジ(CNVSRC 2024)において,NPU-ASLP (Team 237) が導入した視覚音声認識システムについて述べる。
データ処理に関しては,ベースライン1からリップモーション抽出器を利用してマルチスケール映像データを生成する。
トレーニング中に、速度摂動、ランダム回転、水平反転、色変換を含む様々な拡張技術が適用される。
提案手法では, 単一話者タスクが30.47%, 複数話者タスクが34.30%, 単一話者タスクがオープントラックで第2位を確保している。
- 参考スコア(独自算出の注目度): 15.904649354308141
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper delineates the visual speech recognition (VSR) system introduced by the NPU-ASLP (Team 237) in the second Chinese Continuous Visual Speech Recognition Challenge (CNVSRC 2024), engaging in all four tracks, including the fixed and open tracks of Single-Speaker VSR Task and Multi-Speaker VSR Task. In terms of data processing, we leverage the lip motion extractor from the baseline1 to produce multiscale video data. Besides, various augmentation techniques are applied during training, encompassing speed perturbation, random rotation, horizontal flipping, and color transformation. The VSR model adopts an end-to-end architecture with joint CTC/attention loss, introducing Enhanced ResNet3D visual frontend, E-Branchformer encoder, and Bi-directional Transformer decoder. Our approach yields a 30.47% CER for the Single-Speaker Task and 34.30% CER for the Multi-Speaker Task, securing second place in the open track of the Single-Speaker Task and first place in the other three tracks.
- Abstract(参考訳): 本稿では,NPU-ASLP (Team 237) が導入した2回目の中国連続視覚音声認識チャレンジ (CNVSRC 2024) について述べる。
データ処理に関しては,ベースライン1からリップモーション抽出器を利用してマルチスケール映像データを生成する。
さらに、トレーニング中に、速度摂動、ランダム回転、水平反転、色変換を含む様々な拡張技術が適用されている。
VSRモデルは、統合CTC/アテンション損失を伴うエンドツーエンドアーキテクチャを採用し、拡張ResNet3Dビジュアルフロントエンド、E-Branchformerエンコーダ、双方向トランスフォーマーデコーダを導入している。
提案手法では, シングルスピーカタスクが30.47%, マルチスピーカタスクが34.30%, シングルスピーカタスクが2位, その他の3トラックが1位となっている。
関連論文リスト
- The NPU-ASLP-LiAuto System Description for Visual Speech Recognition in
CNVSRC 2023 [67.11294606070278]
本稿では,第1回中国連続視覚音声認識チャレンジ(CNVSRC)2023において,NPU-ASLP-LiAuto(Team 237)が導入した視覚音声認識システムについて述べる。
データ処理に関しては,ベースライン1からリップモーション抽出器を利用してマルチスケール映像データを生成する。
トレーニング中に、速度摂動、ランダム回転、水平反転、色変換を含む様々な拡張技術が適用される。
論文 参考訳(メタデータ) (2024-01-07T14:20:52Z) - MLCA-AVSR: Multi-Layer Cross Attention Fusion based Audio-Visual Speech Recognition [62.89464258519723]
異なるレベルのオーディオ/視覚エンコーダに融合することで、各モードの表現を促進する多層クロスアテンション融合に基づくAVSR手法を提案する。
提案手法は第1位システムを超え,新たなSOTA cpCERの29.13%をこのデータセット上に構築する。
論文 参考訳(メタデータ) (2024-01-07T08:59:32Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - Audio-visual End-to-end Multi-channel Speech Separation, Dereverberation
and Recognition [52.11964238935099]
本稿では,音声-視覚的多チャンネル音声分離,デバーベレーション,認識手法を提案する。
ビデオ入力は、マスクベースのMVDR音声分離、DNN-WPEまたはスペクトルマッピング(SpecM)ベースの音声残響フロントエンドで一貫して実証される。
オックスフォードLSS2データセットのシミュレーションや再生を用いて合成した重畳および残響音声データについて実験を行った。
論文 参考訳(メタデータ) (2023-07-06T10:50:46Z) - Audio-visual multi-channel speech separation, dereverberation and
recognition [70.34433820322323]
本稿では,音声-視覚的多チャンネル音声分離,デバーベレーション,認識手法を提案する。
音声を用いた場合の視覚的モダリティの利点は、2つのニューラルデバーベレーションアプローチでのみ示される。
LRS2データセットを用いて行った実験から,提案手法がベースラインよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-04-05T04:16:03Z) - Audio-visual Multi-channel Recognition of Overlapped Speech [79.21950701506732]
本稿では,音声とマルチチャンネルの重なり合う音声認識システムについて述べる。
実験により,提案したマルチチャネルAVSRシステムは,音声のみのASRシステムを最大6.81% (26.83%) ,22.22% (56.87%) の絶対単語誤り率 (WER) で比較した。
論文 参考訳(メタデータ) (2020-05-18T10:31:19Z) - Discriminative Multi-modality Speech Recognition [17.296404414250553]
視覚は、しばしば音声音声認識(ASR)の相補的モダリティとして使用される。
本稿では,2段階音声認識モデルを提案する。
第1段階では、対象の音声を、対応する唇の動きの視覚情報から助けを借りて背景雑音から分離し、モデル「リスト」を明確にする。
第2段階では、音声モダリティは視覚的モダリティを再び組み合わせて、MSRサブネットワークによる音声の理解を深め、認識率をさらに向上させる。
論文 参考訳(メタデータ) (2020-05-12T07:56:03Z) - Multiresolution and Multimodal Speech Recognition with Transformers [22.995102995029576]
本稿ではトランスフォーマーアーキテクチャを用いた音声視覚自動音声認識(AV-ASR)システムを提案する。
我々は、視覚情報によって提供されるシーンコンテキストに着目して、ASRを接地する。
私たちの結果は、最先端のListen、Attend、Spellベースのアーキテクチャに匹敵します。
論文 参考訳(メタデータ) (2020-04-29T09:32:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。