CMR-Agent: Learning a Cross-Modal Agent for Iterative Image-to-Point Cloud Registration
- URL: http://arxiv.org/abs/2408.02394v1
- Date: Mon, 5 Aug 2024 11:40:59 GMT
- Title: CMR-Agent: Learning a Cross-Modal Agent for Iterative Image-to-Point Cloud Registration
- Authors: Gongxin Yao, Yixin Xuan, Xinyang Li, Yu Pan,
- Abstract summary: Image-to-point cloud registration aims to determine the relative camera pose of an RGB image with respect to a point cloud.
Most learning-based methods establish 2D-3D point correspondences in feature space without any feedback mechanism for iterative optimization.
We propose to reformulate the registration procedure as an iterative Markov decision process, allowing for incremental adjustments to the camera pose.
- Score: 2.400446821380503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-to-point cloud registration aims to determine the relative camera pose of an RGB image with respect to a point cloud. It plays an important role in camera localization within pre-built LiDAR maps. Despite the modality gaps, most learning-based methods establish 2D-3D point correspondences in feature space without any feedback mechanism for iterative optimization, resulting in poor accuracy and interpretability. In this paper, we propose to reformulate the registration procedure as an iterative Markov decision process, allowing for incremental adjustments to the camera pose based on each intermediate state. To achieve this, we employ reinforcement learning to develop a cross-modal registration agent (CMR-Agent), and use imitation learning to initialize its registration policy for stability and quick-start of the training. According to the cross-modal observations, we propose a 2D-3D hybrid state representation that fully exploits the fine-grained features of RGB images while reducing the useless neutral states caused by the spatial truncation of camera frustum. Additionally, the overall framework is well-designed to efficiently reuse one-shot cross-modal embeddings, avoiding repetitive and time-consuming feature extraction. Extensive experiments on the KITTI-Odometry and NuScenes datasets demonstrate that CMR-Agent achieves competitive accuracy and efficiency in registration. Once the one-shot embeddings are completed, each iteration only takes a few milliseconds.
Related papers
- SCIPaD: Incorporating Spatial Clues into Unsupervised Pose-Depth Joint Learning [17.99904937160487]
We introduce SCIPaD, a novel approach that incorporates spatial clues for unsupervised depth-pose joint learning.
SCIPaD achieves a reduction of 22.2% in average translation error and 34.8% in average angular error for camera pose estimation task on the KITTI Odometry dataset.
arXiv Detail & Related papers (2024-07-07T06:52:51Z) - Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion [57.232688209606515]
We present HTCL, a novel Temporal Temporal Context Learning paradigm for improving camera-based semantic scene completion.
Our method ranks $1st$ on the Semantic KITTI benchmark and even surpasses LiDAR-based methods in terms of mIoU.
arXiv Detail & Related papers (2024-07-02T09:11:17Z) - Self-supervised Learning of LiDAR 3D Point Clouds via 2D-3D Neural Calibration [107.61458720202984]
This paper introduces a novel self-supervised learning framework for enhancing 3D perception in autonomous driving scenes.
We propose the learnable transformation alignment to bridge the domain gap between image and point cloud data.
We establish dense 2D-3D correspondences to estimate the rigid pose.
arXiv Detail & Related papers (2024-01-23T02:41:06Z) - SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D
Object Pose Estimation [66.16525145765604]
We introduce an SE(3) diffusion model-based point cloud registration framework for 6D object pose estimation in real-world scenarios.
Our approach formulates the 3D registration task as a denoising diffusion process, which progressively refines the pose of the source point cloud.
Experiments demonstrate that our diffusion registration framework presents outstanding pose estimation performance on the real-world TUD-L, LINEMOD, and Occluded-LINEMOD datasets.
arXiv Detail & Related papers (2023-10-26T12:47:26Z) - Quantity-Aware Coarse-to-Fine Correspondence for Image-to-Point Cloud
Registration [4.954184310509112]
Image-to-point cloud registration aims to determine the relative camera pose between an RGB image and a reference point cloud.
Matching individual points with pixels can be inherently ambiguous due to modality gaps.
We propose a framework to capture quantity-aware correspondences between local point sets and pixel patches.
arXiv Detail & Related papers (2023-07-14T03:55:54Z) - Unleash the Potential of Image Branch for Cross-modal 3D Object
Detection [67.94357336206136]
We present a new cross-modal 3D object detector, namely UPIDet, which aims to unleash the potential of the image branch from two aspects.
First, UPIDet introduces a new 2D auxiliary task called normalized local coordinate map estimation.
Second, we discover that the representational capability of the point cloud backbone can be enhanced through the gradients backpropagated from the training objectives of the image branch.
arXiv Detail & Related papers (2023-01-22T08:26:58Z) - Temporal superimposed crossover module for effective continuous sign
language [10.920363368754721]
This paper proposes a zero parameter, zero temporal superposition crossover module(TSCM), and combines it with 2D convolution to form a "TSCM+2D convolution" hybrid convolution.
Experiments on two large-scale continuous sign language datasets demonstrate the effectiveness of the proposed method and achieve highly competitive results.
arXiv Detail & Related papers (2022-11-07T09:33:42Z) - From One to Many: Dynamic Cross Attention Networks for LiDAR and Camera
Fusion [12.792769704561024]
Existing fusion methods tend to align each 3D point to only one projected image pixel based on calibration.
We propose a Dynamic Cross Attention (DCA) module with a novel one-to-many cross-modality mapping.
The whole fusion architecture named Dynamic Cross Attention Network (DCAN) exploits multi-level image features and adapts to multiple representations of point clouds.
arXiv Detail & Related papers (2022-09-25T16:10:14Z) - CorrI2P: Deep Image-to-Point Cloud Registration via Dense Correspondence [51.91791056908387]
We propose the first feature-based dense correspondence framework for addressing the image-to-point cloud registration problem, dubbed CorrI2P.
Specifically, given a pair of a 2D image before a 3D point cloud, we first transform them into high-dimensional feature space feed the features into a symmetric overlapping region to determine the region where the image point cloud overlap.
arXiv Detail & Related papers (2022-07-12T11:49:31Z) - Self-Supervised Multi-Frame Monocular Scene Flow [61.588808225321735]
We introduce a multi-frame monocular scene flow network based on self-supervised learning.
We observe state-of-the-art accuracy among monocular scene flow methods based on self-supervised learning.
arXiv Detail & Related papers (2021-05-05T17:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.