Bridging the Gap to Next Generation Power System Planning and Operation with Quantum Computation
- URL: http://arxiv.org/abs/2408.02432v1
- Date: Mon, 5 Aug 2024 12:41:28 GMT
- Title: Bridging the Gap to Next Generation Power System Planning and Operation with Quantum Computation
- Authors: Priyanka Arkalgud Ganeshamurthy, Kumar Ghosh, Corey O'Meara, Giorgio Cortiana, Jan Schiefelbein-Lach,
- Abstract summary: The integration of renewable energy generations, varying nature loads, importance of active role of distribution system and consumer participation in grid operation has changed the landscape of classical power grids.
Although sophisticated computations to process gigantic volume of data to produce useful information is the paradigm of future grid operations, it brings along the burden of computational complexity.
Advancements in quantum technologies holds promising solution for dealing with demanding computational complexity of power system related applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Innovative solutions and developments are being inspected to tackle rising electrical power demand to be supplied by clean forms of energy. The integration of renewable energy generations, varying nature loads, importance of active role of distribution system and consumer participation in grid operation has changed the landscape of classical power grids. Implementation of smarter applications to plan, monitor, operate the grid safely are deemed paramount for efficient, secure and reliable functioning of grid. Although sophisticated computations to process gigantic volume of data to produce useful information in a time critical manner is the paradigm of future grid operations, it brings along the burden of computational complexity. Advancements in quantum technologies holds promising solution for dealing with demanding computational complexity of power system related applications. In this article, we lay out clear motivations for seeking quantum solutions for solving computational burden challenges associated with power system applications. Next we present an overview of quantum solutions for various power system related applications available in current literature and suggest future topics for research. We further highlight challenges with existing quantum solutions for exploiting full quantum capabilities. Additionally, this paper serves as a bridge for power engineers to the quantum world by outlining essential quantum computation fundamentals for enabling smoother transition to future of power system computations.
Related papers
- From Graphs to Qubits: A Critical Review of Quantum Graph Neural Networks [56.51893966016221]
Quantum Graph Neural Networks (QGNNs) represent a novel fusion of quantum computing and Graph Neural Networks (GNNs)
This paper critically reviews the state-of-the-art in QGNNs, exploring various architectures.
We discuss their applications across diverse fields such as high-energy physics, molecular chemistry, finance and earth sciences, highlighting the potential for quantum advantage.
arXiv Detail & Related papers (2024-08-12T22:53:14Z) - Quantum Optimization for the Future Energy Grid: Summary and Quantum Utility Prospects [0.0]
"Q-GRID" aims to assess potential quantum utility optimization applications in the electrical grid.
The project focuses on two layers of optimization problems relevant to decentralized energy generation and transmission as well as novel energy transportation/exchange methods such as Peer-2-Peer energy trading and microgrid formation.
arXiv Detail & Related papers (2024-03-26T08:52:54Z) - Early Exploration of a Flexible Framework for Efficient Quantum Linear
Solvers in Power Systems [7.346769343315727]
We introduce a versatile framework, powered by NWQSim, that bridges the gap between power system applications and quantum linear solvers available in Qiskit.
Through innovative gate fusion strategies, reduced circuit depth, and GPU acceleration, our simulator significantly enhances resource efficiency.
arXiv Detail & Related papers (2024-02-13T00:08:21Z) - Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
Quantum computing networks execute large-scale generative AI computation tasks and advanced quantum algorithms.
efficient resource allocation in quantum computing networks is a critical challenge due to qubit variability and network complexity.
We introduce state-of-the-art reinforcement learning (RL) algorithms, from generative learning to quantum machine learning for optimal quantum resource allocation.
arXiv Detail & Related papers (2024-01-13T17:16:38Z) - Assessing Quantum Computing Performance for Energy Optimization in a
Prosumer Community [1.072460284847973]
"Prosumer problem" is the problem of scheduling the household loads on the basis of the user needs, the electricity prices, and the availability of local renewable energy.
Quantum computers can offer a significant breakthrough in treating this problem thanks to the intrinsic parallel nature of quantum operations.
We report on an extensive set of experiments, on simulators and real quantum hardware, for different problem sizes.
arXiv Detail & Related papers (2023-11-17T15:48:51Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
Quantum cloud computing (QCC) offers a promising approach to efficiently provide quantum computing resources.
The fluctuations in user demand and quantum circuit requirements are challenging for efficient resource provisioning.
We propose a resource allocation model to provision quantum computing and networking resources.
arXiv Detail & Related papers (2023-07-25T00:38:46Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Quantum computing for energy systems optimization: Challenges and
opportunities [2.5699371511994777]
This paper explores the applications of quantum computing to energy systems optimization problems.
The basic concepts underlying quantum computation and their distinctive characteristics in comparison to their classical counterparts are also discussed.
arXiv Detail & Related papers (2020-02-29T13:30:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.