Quantum computing for energy systems optimization: Challenges and
opportunities
- URL: http://arxiv.org/abs/2003.00254v1
- Date: Sat, 29 Feb 2020 13:30:54 GMT
- Title: Quantum computing for energy systems optimization: Challenges and
opportunities
- Authors: Akshay Ajagekar, Fengqi You
- Abstract summary: This paper explores the applications of quantum computing to energy systems optimization problems.
The basic concepts underlying quantum computation and their distinctive characteristics in comparison to their classical counterparts are also discussed.
- Score: 2.5699371511994777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The purpose of this paper is to explore the applications of quantum computing
to energy systems optimization problems and discuss some of the challenges
faced by quantum computers with techniques to overcome them. The basic concepts
underlying quantum computation and their distinctive characteristics in
comparison to their classical counterparts are also discussed. Along with
different hardware architecture description of two commercially available
quantum systems, an example making use of open-source software tools is
provided as a first step for diving into the new realm of programming quantum
computers for solving systems optimization problems. The trade-off between
qualities of these two quantum architectures is also discussed. Complex nature
of energy systems due to their structure and large number of design and
operational constraints make energy systems optimization a hard problem for
most available algorithms. Problems like facility location allocation for
energy systems infrastructure development, unit commitment of electric power
systems operations, and heat exchanger network synthesis which fall under the
category of energy systems optimization are solved using both classical
algorithms implemented on conventional CPU based computer and quantum algorithm
realized on quantum computing hardware. Their designs, implementation and
results are stated. Additionally, this paper describes the limitations of
state-of-the-art quantum computers and their great potential to impact the
field of energy systems optimization.
Related papers
- A Review of Quantum Scientific Computing Algorithms for Engineering Problems [0.0]
Quantum computing, leveraging quantum phenomena like superposition and entanglement, is emerging as a transformative force in computing technology.
This paper systematically explores the foundational concepts of quantum mechanics and their implications for computational advancements.
arXiv Detail & Related papers (2024-08-25T21:40:22Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Unlocking Quantum Optimization: A Use Case Study on NISQ Systems [0.0]
This paper considers two industrial relevant use cases: one in the realm of optimizing charging schedules for electric vehicles, the other concerned with the optimization of truck routes.
Our central contribution are systematic series of examples derived from these uses cases that we execute on different processors of the gate-based quantum computers of IBM as well as on the quantum annealer of D-Wave.
arXiv Detail & Related papers (2024-04-10T17:08:07Z) - Quantum Algorithm Cards: Streamlining the development of hybrid
classical-quantum applications [0.0]
The emergence of quantum computing proposes a revolutionary paradigm that can radically transform numerous scientific and industrial application domains.
The ability of quantum computers to scale computations implies better performance and efficiency for certain algorithmic tasks than current computers provide.
To gain benefit from such improvement, quantum computers must be integrated with existing software systems, a process that is not straightforward.
arXiv Detail & Related papers (2023-10-04T06:02:59Z) - Software Architecture Challenges in Integrating Hybrid Classical-Quantum
Systems [3.2851683371946767]
The emergence of quantum computing proposes a revolutionary paradigm that can radically transform numerous scientific and industrial application domains.
The ability of quantum computers to scale computations exponentially imply better performance and efficiency for certain algorithmic tasks than current computers provide.
To gain benefit from such improvement, quantum computers must be integrated with existing software systems, a process that is not straightforward.
arXiv Detail & Related papers (2023-08-02T08:20:34Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Quantum computing hardware for HEP algorithms and sensing [36.67390040418004]
Quantum information science harnesses the principles of quantum mechanics to realize computational algorithms with complexities vastly intractable by current computer platforms.
Fermilab's Superconducting Quantum Materials and Systems (SQMS) Center is dedicated to providing breakthroughs in quantum computing and sensing.
We discuss the two most promising superconducting quantum architectures for HEP algorithms, i.e. three-level systems (qutrits) supported by transmon devices coupled to planar devices and multi-level systems (qudits with arbitrary N energy levels) supported by superconducting 3D cavities.
arXiv Detail & Related papers (2022-04-19T01:37:36Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.