論文の概要: Black-Box Adversarial Attacks on LLM-Based Code Completion
- arxiv url: http://arxiv.org/abs/2408.02509v2
- Date: Fri, 13 Jun 2025 15:36:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 17:50:49.422493
- Title: Black-Box Adversarial Attacks on LLM-Based Code Completion
- Title(参考訳): LLMに基づくコード補完におけるブラックボックス対応攻撃
- Authors: Slobodan Jenko, Niels Mündler, Jingxuan He, Mark Vero, Martin Vechev,
- Abstract要約: 本研究では,最先端のブラックボックスLCMベースのコード補完エンジンが敵にひそかに偏っていることを実証する。
私たちはこの目標を達成する最初の攻撃、INSECを紹介します。
さまざまな最先端のオープンソースモデルやブラックボックスの商用サービスで評価することで、INSECの幅広い適用性と有効性を実証する。
- 参考スコア(独自算出の注目度): 5.633172380505533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern code completion engines, powered by large language models (LLMs), assist millions of developers with their strong capabilities to generate functionally correct code. Due to this popularity, it is crucial to investigate the security implications of relying on LLM-based code completion. In this work, we demonstrate that state-of-the-art black-box LLM-based code completion engines can be stealthily biased by adversaries to significantly increase their rate of insecure code generation. We present the first attack, named INSEC, that achieves this goal. INSEC works by injecting an attack string as a short comment in the completion input. The attack string is crafted through a query-based optimization procedure starting from a set of carefully designed initialization schemes. We demonstrate INSEC's broad applicability and effectiveness by evaluating it on various state-of-the-art open-source models and black-box commercial services (e.g., OpenAI API and GitHub Copilot). On a diverse set of security-critical test cases, covering 16 CWEs across 5 programming languages, INSEC increases the rate of generated insecure code by more than 50%, while maintaining the functional correctness of generated code. We consider INSEC practical -- it requires low resources and costs less than 10 US dollars to develop on commodity hardware. Moreover, we showcase the attack's real-world deployability, by developing an IDE plug-in that stealthily injects INSEC into the GitHub Copilot extension.
- Abstract(参考訳): 大規模言語モデル(LLM)を駆使したモダンなコード補完エンジンは、数百万人の開発者が機能的に正しいコードを生成する強力な能力を持っている。
この人気のため、LLMベースのコード補完に依存することによるセキュリティへの影響を調査することが重要である。
本研究では、最先端のブラックボックスLCMベースのコード補完エンジンが敵に密かに偏り、安全性の低いコード生成率を大幅に向上させることができることを示す。
私たちはこの目標を達成する最初の攻撃、INSECを紹介します。
INSECは、完了入力にアタック文字列を短いコメントとして注入することで機能する。
攻撃文字列は、慎重に設計された初期化スキームのセットから始まるクエリベースの最適化手順によって作成される。
さまざまな最先端のオープンソースモデルやブラックボックスの商用サービス(OpenAI APIやGitHub Copilotなど)で評価することで、INSECの広範な適用性と有効性を実証しています。
5つのプログラミング言語にわたる16のCWEをカバーする、さまざまなセキュリティクリティカルなテストケースにおいて、INSECは、生成されたコードの機能的正しさを維持しながら、生成した安全でないコードの速度を50%以上向上させる。
われわれはINSECの実用性を考えており、コモディティ・ハードウェアの開発には低いリソースと10ドル未満のコストが要る。
さらに、GitHub CopilotエクステンションにINSECを密かに注入するIDEプラグインを開発することで、攻撃の現実的なデプロイ可能性についても紹介する。
関連論文リスト
- Decompiling Smart Contracts with a Large Language Model [51.49197239479266]
Etherscanの78,047,845のスマートコントラクトがデプロイされているにも関わらず(2025年5月26日現在)、わずか767,520 (1%)がオープンソースである。
この不透明さは、オンチェーンスマートコントラクトバイトコードの自動意味解析を必要とする。
バイトコードを可読でセマンティックに忠実なSolidityコードに変換する,先駆的な逆コンパイルパイプラインを導入する。
論文 参考訳(メタデータ) (2025-06-24T13:42:59Z) - SCGAgent: Recreating the Benefits of Reasoning Models for Secure Code Generation with Agentic Workflows [8.546083810528502]
大規模言語モデル(LLM)は、さまざまなシナリオのコード生成タスクで広く成功している。
関数型コードを生成するにもかかわらず、現在のLLMはセキュリティを優先せず、悪用可能な脆弱性を持つコードを生成する可能性がある。
安全性の高いコードを生成する手法を提案し,SCGAgentを導入する。
論文 参考訳(メタデータ) (2025-06-08T23:08:08Z) - Wolves in the Repository: A Software Engineering Analysis of the XZ Utils Supply Chain Attack [0.8517406772939294]
デジタルエコノミーはオープンソースソフトウェア(OSS)をベースとしており、オープンソースコンポーネントを含む最新のアプリケーションの90%が見積もられている。
本稿では,Xzutilsプロジェクト(-2024-3094)に対する高度な攻撃について検討する。
私たちの分析では、ソフトウェアエンジニアリングのプラクティス自体を操作する新しい種類のサプライチェーン攻撃を明らかにしています。
論文 参考訳(メタデータ) (2025-04-24T12:06:11Z) - RedCode: Risky Code Execution and Generation Benchmark for Code Agents [50.81206098588923]
RedCodeはリスクの高いコード実行と生成のためのベンチマークである。
RedCode-Execは、危険なコード実行につながる可能性のある、挑戦的なプロンプトを提供する。
RedCode-Genは160のプロンプトに関数シグネチャとドキュメントを入力として提供し、コードエージェントが命令に従うかどうかを評価する。
論文 参考訳(メタデータ) (2024-11-12T13:30:06Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - Security Attacks on LLM-based Code Completion Tools [11.54818796372798]
大きな言語モデル(LLM)は、コード補完機能が大きく進歩し、新しい世代のコード補完ツール(LCCT)を生み出した。
LCCTには固有の特徴があり、複数の情報ソースを入力として統合し、自然言語の相互作用に対するコード提案を優先順位付けする。
本稿では、これらの特徴を利用して、脱獄とデータ抽出攻撃の訓練という、2つの重大なセキュリティリスクに対する攻撃手法を開発する。
論文 参考訳(メタデータ) (2024-08-20T17:00:04Z) - ShadowCode: Towards (Automatic) External Prompt Injection Attack against Code LLMs [56.46702494338318]
本稿では,コード指向の大規模言語モデルに対する(自動)外部プロンプトインジェクションという,新たな攻撃パラダイムを紹介する。
コードシミュレーションに基づいて誘導摂動を自動生成する,シンプルで効果的な方法であるShadowCodeを提案する。
3つの人気のあるプログラミング言語にまたがる31の脅威ケースを発生させるため、13の異なる悪意のある目標に対して本手法を評価した。
論文 参考訳(メタデータ) (2024-07-12T10:59:32Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - An LLM-Assisted Easy-to-Trigger Backdoor Attack on Code Completion Models: Injecting Disguised Vulnerabilities against Strong Detection [17.948513691133037]
我々は,コード補完モデルに基づくLLM支援バックドアアタックフレームワークであるCodeBreakerを紹介した。
悪意のあるペイロードを最小限の変換でソースコードに直接統合することで、CodeBreakerは現在のセキュリティ対策に挑戦する。
論文 参考訳(メタデータ) (2024-06-10T22:10:05Z) - FV8: A Forced Execution JavaScript Engine for Detecting Evasive Techniques [53.288368877654705]
FV8はJavaScriptコードの回避テクニックを特定するために設計された修正V8 JavaScriptエンジンである。
動的コードを条件付きで注入するAPI上でのコード実行を選択的に実施する。
1,443のnpmパッケージと、少なくとも1つのタイプのエスケープを含む164の(82%)拡張を識別する。
論文 参考訳(メタデータ) (2024-05-21T19:54:19Z) - Enhancing Security of AI-Based Code Synthesis with GitHub Copilot via Cheap and Efficient Prompt-Engineering [1.7702475609045947]
開発者や企業がその潜在能力を最大限に活用することを避けている理由の1つは、生成されたコードに対する疑わしいセキュリティである。
本稿ではまず,現状を概観し,今後の課題について述べる。
我々は、GitHub CopilotのようなAIベースのコードジェネレータのコードセキュリティを改善するために、プロンプト変換手法に基づく体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-19T12:13:33Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - LLM-Powered Code Vulnerability Repair with Reinforcement Learning and
Semantic Reward [3.729516018513228]
我々は,大規模な言語モデルであるCodeGen2を利用した多目的コード脆弱性解析システム texttSecRepair を導入する。
そこで本研究では,LLMを用いた脆弱性解析に適した命令ベースデータセットを提案する。
GitHub上の6つのオープンソースIoTオペレーティングシステムにおいて、ゼロデイとNデイの脆弱性を特定します。
論文 参考訳(メタデータ) (2024-01-07T02:46:39Z) - SALLM: Security Assessment of Generated Code [0.5137309756089941]
本稿では,セキュアなコードを体系的に生成する大規模言語モデルの能力をベンチマークするフレームワークであるSALLMについて述べる。
フレームワークには3つの主要なコンポーネントがある。セキュリティ中心のPythonプロンプトの新たなデータセット、生成されたコードを評価するための評価テクニック、セキュアなコード生成の観点からモデルのパフォーマンスを評価するための新しいメトリクスである。
論文 参考訳(メタデータ) (2023-11-01T22:46:31Z) - A LLM Assisted Exploitation of AI-Guardian [57.572998144258705]
IEEE S&P 2023で発表された敵に対する最近の防衛であるAI-Guardianの堅牢性を評価する。
我々は、このモデルを攻撃するためのコードを書かず、代わりに、GPT-4に命令とガイダンスに従って全ての攻撃アルゴリズムを実装するよう促します。
このプロセスは驚くほど効果的で効率的であり、言語モデルでは、この論文の著者が実行したよりも高速に曖昧な命令からコードを生成することもあった。
論文 参考訳(メタデータ) (2023-07-20T17:33:25Z) - Backdooring Neural Code Search [20.88291603306741]
敵はニューラルコードサーチモデルでバックドアを注入することができる。
本稿では、このような攻撃が実現可能であり、非常にステルス性が高いことを実証する。
我々の攻撃BADCODEは、攻撃をより効果的かつステルス的に、特別なトリガー生成および注入手順を特徴としている。
論文 参考訳(メタデータ) (2023-05-27T16:00:50Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - Predicting Vulnerability In Large Codebases With Deep Code
Representation [6.357681017646283]
ソフトウェアエンジニアは様々なモジュールのコードを書きます。
過去に(異なるモジュールで)修正された同様の問題やバグも、本番コードで再び導入される傾向にある。
ソースコードから生成した抽象構文木(AST)の深部表現とアクティブフィードバックループを用いた,AIに基づく新しいシステムを開発した。
論文 参考訳(メタデータ) (2020-04-24T13:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。