Caution for the Environment: Multimodal Agents are Susceptible to Environmental Distractions
- URL: http://arxiv.org/abs/2408.02544v1
- Date: Mon, 5 Aug 2024 15:16:22 GMT
- Title: Caution for the Environment: Multimodal Agents are Susceptible to Environmental Distractions
- Authors: Xinbei Ma, Yiting Wang, Yao Yao, Tongxin Yuan, Aston Zhang, Zhuosheng Zhang, Hai Zhao,
- Abstract summary: This paper investigates the faithfulness of multimodal large language model (MLLM) agents in the graphical user interface (GUI) environment.
A general setting is proposed where both the user and the agent are benign, and the environment, while not malicious, contains unrelated content.
Experimental results reveal that even the most powerful models, whether generalist agents or specialist GUI agents, are susceptible to distractions.
- Score: 68.92637077909693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the faithfulness of multimodal large language model (MLLM) agents in the graphical user interface (GUI) environment, aiming to address the research question of whether multimodal GUI agents can be distracted by environmental context. A general setting is proposed where both the user and the agent are benign, and the environment, while not malicious, contains unrelated content. A wide range of MLLMs are evaluated as GUI agents using our simulated dataset, following three working patterns with different levels of perception. Experimental results reveal that even the most powerful models, whether generalist agents or specialist GUI agents, are susceptible to distractions. While recent studies predominantly focus on the helpfulness (i.e., action accuracy) of multimodal agents, our findings indicate that these agents are prone to environmental distractions, resulting in unfaithful behaviors. Furthermore, we switch to the adversarial perspective and implement environment injection, demonstrating that such unfaithfulness can be exploited, leading to unexpected risks.
Related papers
- Enhancing Language Multi-Agent Learning with Multi-Agent Credit Re-Assignment for Interactive Environment Generalization [37.37641889714614]
We propose CollabUIAgents, a multi-agent reinforcement learning framework with a novel multi-agent credit re-assignment strategy.
We show that our framework improves both performance and cross-environment generalizability of multi-agent systems.
arXiv Detail & Related papers (2025-02-20T12:26:15Z) - AgentAlign: Misalignment-Adapted Multi-Agent Perception for Resilient Inter-Agent Sensor Correlations [8.916036880001734]
Existing research overlooks the fragile multi-sensor correlations in multi-agent settings.
AgentAlign is a real-world heterogeneous agent cross-modality feature alignment framework.
We present a novel V2XSet-noise dataset that simulates realistic sensor imperfections under diverse environmental conditions.
arXiv Detail & Related papers (2024-12-09T01:51:18Z) - MageBench: Bridging Large Multimodal Models to Agents [90.59091431806793]
LMMs have shown impressive visual understanding capabilities, with the potential to be applied in agents.
Existing benchmarks mostly assess their reasoning abilities in language part.
MageBench is a reasoning capability oriented multimodal agent benchmark.
arXiv Detail & Related papers (2024-12-05T17:08:19Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARD consists of three unexpected disaster scenarios, including fire, flood, and wind.
This benchmark enables us to evaluate autonomous agents' decision-making capabilities across various pipelines.
arXiv Detail & Related papers (2024-01-23T18:59:43Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - INTAGS: Interactive Agent-Guided Simulation [4.04638613278729]
In many applications involving multi-agent system (MAS), it is imperative to test an experimental (Exp) autonomous agent in a high-fidelity simulator prior to its deployment to production.
We propose a metric to distinguish between real and synthetic multi-agent systems, which is evaluated through the live interaction between the Exp and BG agents.
We show that using INTAGS to calibrate the simulator can generate more realistic market data compared to the state-of-the-art conditional Wasserstein Generative Adversarial Network approach.
arXiv Detail & Related papers (2023-09-04T19:56:18Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z) - Emergent Complexity and Zero-shot Transfer via Unsupervised Environment
Design [121.73425076217471]
We propose Unsupervised Environment Design (UED), where developers provide environments with unknown parameters, and these parameters are used to automatically produce a distribution over valid, solvable environments.
We call our technique Protagonist Antagonist Induced Regret Environment Design (PAIRED)
Our experiments demonstrate that PAIRED produces a natural curriculum of increasingly complex environments, and PAIRED agents achieve higher zero-shot transfer performance when tested in highly novel environments.
arXiv Detail & Related papers (2020-12-03T17:37:01Z) - Heterogeneous Multi-Agent Reinforcement Learning for Unknown Environment
Mapping [0.0]
We present an actor-critic algorithm that allows a team of heterogeneous agents to learn decentralized control policies for covering an unknown environment.
This task is of interest to national security and emergency response organizations that would like to enhance situational awareness in hazardous areas by deploying teams of unmanned aerial vehicles.
arXiv Detail & Related papers (2020-10-06T12:23:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.