R-AIF: Solving Sparse-Reward Robotic Tasks from Pixels with Active Inference and World Models
- URL: http://arxiv.org/abs/2409.14216v1
- Date: Sat, 21 Sep 2024 18:32:44 GMT
- Title: R-AIF: Solving Sparse-Reward Robotic Tasks from Pixels with Active Inference and World Models
- Authors: Viet Dung Nguyen, Zhizhuo Yang, Christopher L. Buckley, Alexander Ororbia,
- Abstract summary: We introduce prior preference learning techniques and self-revision schedules to help the agent excel in sparse-reward, continuous action, goal-based robotic control POMDP environments.
We show that our agents offer improved performance over state-of-the-art models in terms of cumulative rewards, relative stability, and success rate.
- Score: 50.19174067263255
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Although research has produced promising results demonstrating the utility of active inference (AIF) in Markov decision processes (MDPs), there is relatively less work that builds AIF models in the context of environments and problems that take the form of partially observable Markov decision processes (POMDPs). In POMDP scenarios, the agent must infer the unobserved environmental state from raw sensory observations, e.g., pixels in an image. Additionally, less work exists in examining the most difficult form of POMDP-centered control: continuous action space POMDPs under sparse reward signals. In this work, we address issues facing the AIF modeling paradigm by introducing novel prior preference learning techniques and self-revision schedules to help the agent excel in sparse-reward, continuous action, goal-based robotic control POMDP environments. Empirically, we show that our agents offer improved performance over state-of-the-art models in terms of cumulative rewards, relative stability, and success rate. The code in support of this work can be found at https://github.com/NACLab/robust-active-inference.
Related papers
- RUMI: Rummaging Using Mutual Information [9.88370289799239]
Rummaging Using Mutual Information (RUMI) is a method for online generation of robot action sequences.
We develop an information gain cost function and a reachability cost function to keep the object within the robot's reach.
RUMI demonstrates superior performance in both simulated and real tasks compared to baseline methods.
arXiv Detail & Related papers (2024-08-19T23:16:18Z) - Learning Latent Dynamic Robust Representations for World Models [9.806852421730165]
Visual Model-Based Reinforcement Learning (MBL) promises to agent's knowledge about the underlying dynamics of the environment.
Top-temporal agents such as Dreamer often struggle with visual pixel-based inputs in the presence of irrelevant noise in the observation space.
We apply a-temporal masking strategy, combined with latent reconstruction, to capture endogenous task-specific aspects of the environment for world models.
arXiv Detail & Related papers (2024-05-10T06:28:42Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Dynamic-Resolution Model Learning for Object Pile Manipulation [33.05246884209322]
We investigate how to learn dynamic and adaptive representations at different levels of abstraction to achieve the optimal trade-off between efficiency and effectiveness.
Specifically, we construct dynamic-resolution particle representations of the environment and learn a unified dynamics model using graph neural networks (GNNs)
We show that our method achieves significantly better performance than state-of-the-art fixed-resolution baselines at the gathering, sorting, and redistribution of granular object piles.
arXiv Detail & Related papers (2023-06-29T05:51:44Z) - Act-Then-Measure: Reinforcement Learning for Partially Observable
Environments with Active Measuring [4.033107207078282]
We study Markov decision processes (MDPs), where agents have direct control over when and how they gather information.
In these models, actions consist of two components: a control action that affects the environment, and a measurement action that affects what the agent can observe.
We show how following this assumption may lead to shorter policy times and prove a bound on the performance loss incurred by the computation.
arXiv Detail & Related papers (2023-03-14T23:22:32Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
arXiv Detail & Related papers (2021-06-04T10:03:36Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
This paper investigates the motion planning of autonomous dynamical systems modeled by Markov decision processes (MDP)
The novelty is to design an embedded product MDP (EP-MDP) between the LDGBA and the MDP.
The proposed LDGBA-based reward shaping and discounting schemes for the model-free reinforcement learning (RL) only depend on the EP-MDP states.
arXiv Detail & Related papers (2021-02-24T01:11:25Z) - Exploiting Submodular Value Functions For Scaling Up Active Perception [60.81276437097671]
In active perception tasks, agent aims to select sensory actions that reduce uncertainty about one or more hidden variables.
Partially observable Markov decision processes (POMDPs) provide a natural model for such problems.
As the number of sensors available to the agent grows, the computational cost of POMDP planning grows exponentially.
arXiv Detail & Related papers (2020-09-21T09:11:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.