論文の概要: Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing
- arxiv url: http://arxiv.org/abs/2408.02558v3
- Date: Fri, 16 Aug 2024 12:33:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 10:58:09.038388
- Title: Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing
- Title(参考訳): Peer-induced Fairness: アルゴリズムフェアネス監査のための因果的アプローチ
- Authors: Shiqi Fang, Zexun Chen, Jake Ansell,
- Abstract要約: 2024年8月1日からのEU AI Actの効果により、クレジットスコアリングのようなリスクの高いアプリケーションは、厳格な透明性と品質基準に従わなければならない。
アルゴリズムの公平性を科学的に監査するにはどうすればいいのか?
本稿では, 対実的公正と高度な因果推論技術を活用して, 「ピア誘発公正」という新たな監査フレームワークを導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the EU AI Act effective from 1 August 2024, high-risk applications like credit scoring must adhere to stringent transparency and quality standards, including algorithmic fairness evaluations. Consequently, developing tools for auditing algorithmic fairness has become crucial. This paper addresses a key question: how can we scientifically audit algorithmic fairness? It is vital to determine whether adverse decisions result from algorithmic discrimination or the subjects' inherent limitations. We introduce a novel auditing framework, ``peer-induced fairness'', leveraging counterfactual fairness and advanced causal inference techniques within credit approval systems. Our approach assesses fairness at the individual level through peer comparisons, independent of specific AI methodologies. It effectively tackles challenges like data scarcity and imbalance, common in traditional models, particularly in credit approval. Model-agnostic and flexible, the framework functions as both a self-audit tool for stakeholders and an external audit tool for regulators, offering ease of integration. It also meets the EU AI Act's transparency requirements by providing clear feedback on whether adverse decisions stem from personal capabilities or discrimination. We demonstrate the framework's usefulness by applying it to SME credit approval, revealing significant bias: 41.51% of micro-firms face discrimination compared to non-micro firms. These findings highlight the framework's potential for diverse AI applications.
- Abstract(参考訳): 2024年8月1日からのEU AI Actの効果により、信用スコアリングのようなリスクの高いアプリケーションは、アルゴリズムの公正性評価を含む厳格な透明性と品質基準に従わなければならない。
その結果,アルゴリズムフェアネスを監査するツールの開発が重要となった。
アルゴリズムの公平性を科学的に監査するにはどうすればいいのか?
アルゴリズムによる差別や被写体固有の制限によって悪い決定がもたらされるかどうかを判断することが不可欠である。
本稿では,新たな監査フレームワークである‘peer-induced fairness’を導入し,信用承認システム内での対実的公正性と高度な因果推論技術を活用する。
提案手法は,特定のAI手法に依存しないピア比較により,個人レベルでの公平性を評価する。
データ不足や不均衡といった課題に効果的に対処する。
モデルに依存しないフレキシブルなフレームワークは、利害関係者のための自己監査ツールと規制当局のための外部監査ツールの両方として機能し、統合の容易さを提供する。
また、有害な決定が個人の能力や差別に起因するかどうかについて明確なフィードバックを提供することで、EU AI Actの透明性要件を満たしている。
41.51%のマイクロ企業が、非マイクロ企業に比べて顔の差別を肯定している。
これらの発見は、多様なAIアプリケーションに対するフレームワークの可能性を強調している。
関連論文リスト
- Ethical and Scalable Automation: A Governance and Compliance Framework for Business Applications [0.0]
本稿では、AIが倫理的で、制御可能で、実行可能で、望ましいものであることを保証するフレームワークを紹介する。
異なるケーススタディは、学術と実践の両方の環境でAIを統合することで、このフレームワークを検証する。
論文 参考訳(メタデータ) (2024-09-25T12:39:28Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
計算モデルにおける透過的な実装が実現可能かどうかを分析するための枠組みを導出する。
以上の結果から,Blum-Shub-Smale Machinesは,逆問題に対する信頼性の高い解法を確立できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-01-18T15:32:38Z) - Causal Fairness for Outcome Control [68.12191782657437]
本稿では,自動システムにおいて,公平かつ公平な結果変数を最適化することを目的とした,結果制御と呼ばれる特定の意思決定タスクについて検討する。
本稿では、まず因果レンズを通して利益の概念を分析し、特定の個人が肯定的な決定によってどれだけの利益を得られるかを明らかにする。
次に、保護された属性の影響を受けている可能性があることに留意し、これを分析するために使用できる因果的ツールを提案する。
論文 参考訳(メタデータ) (2023-06-08T09:31:18Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Beyond Incompatibility: Trade-offs between Mutually Exclusive Fairness Criteria in Machine Learning and Law [2.959308758321417]
本稿では,3つのフェアネス基準を連続的に補間する新しいアルゴリズム(FAir Interpolation Method: FAIM)を提案する。
我々は,合成データ,CompASデータセット,電子商取引部門による新たな実世界のデータセットに適用した場合のアルゴリズムの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-01T12:47:54Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax
Audit Models [73.24381010980606]
本研究は、IRSによる税務監査選択を通知するシステムの文脈におけるアルゴリズムフェアネスの問題について検討する。
監査を選択するための柔軟な機械学習手法が、垂直エクイティにどのように影響するかを示す。
この結果は,公共セクター全体でのアルゴリズムツールの設計に影響を及ぼす。
論文 参考訳(メタデータ) (2022-06-20T16:27:06Z) - Fairness Score and Process Standardization: Framework for Fairness
Certification in Artificial Intelligence Systems [0.4297070083645048]
本稿では,データ駆動型AIシステムの公平性を測定するための新しいフェアネススコアを提案する。
また、公正性の概念を運用し、そのようなシステムの商用展開を容易にするためのフレームワークも提供する。
論文 参考訳(メタデータ) (2022-01-10T15:45:12Z) - Understanding Relations Between Perception of Fairness and Trust in
Algorithmic Decision Making [8.795591344648294]
本研究の目的は,人間における帰納的アルゴリズムの公平さと知覚の関係を理解することである。
また,アルゴリズムの公平性が,アルゴリズム決定におけるユーザの信頼にどのように影響するかについても検討する。
論文 参考訳(メタデータ) (2021-09-29T11:00:39Z) - Towards a Flexible Framework for Algorithmic Fairness [0.8379286663107844]
近年、アルゴリズム決定システムにおける非差別性を保証するための多くの異なる定義が提案されている。
本稿では, 最適な輸送手段を利用して, フェアネス定義の相違を補間するフレキシブルな枠組みを提案する。
論文 参考訳(メタデータ) (2020-10-15T16:06:53Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。