論文の概要: Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing
- arxiv url: http://arxiv.org/abs/2408.02558v4
- Date: Thu, 5 Sep 2024 23:38:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 18:10:23.889583
- Title: Peer-induced Fairness: A Causal Approach for Algorithmic Fairness Auditing
- Title(参考訳): Peer-induced Fairness: アルゴリズムフェアネス監査のための因果的アプローチ
- Authors: Shiqi Fang, Zexun Chen, Jake Ansell,
- Abstract要約: 欧州連合の人工知能法は2024年8月1日に施行された。
リスクの高いAIアプリケーションは、厳格な透明性と公正な基準に従わなければならない。
本稿では,対実的公正性とピア比較戦略の強みを組み合わせた新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the European Union's Artificial Intelligence Act taking effect on 1 August 2024, high-risk AI applications must adhere to stringent transparency and fairness standards. This paper addresses a crucial question: how can we scientifically audit algorithmic fairness? Current methods typically remain at the basic detection stage of auditing, without accounting for more complex scenarios. We propose a novel framework, ``peer-induced fairness'', which combines the strengths of counterfactual fairness and peer comparison strategy, creating a reliable and robust tool for auditing algorithmic fairness. Our framework is universal, adaptable to various domains, and capable of handling different levels of data quality, including skewed distributions. Moreover, it can distinguish whether adverse decisions result from algorithmic discrimination or inherent limitations of the subjects, thereby enhancing transparency. This framework can serve as both a self-assessment tool for AI developers and an external assessment tool for auditors to ensure compliance with the EU AI Act. We demonstrate its utility in small and medium-sized enterprises access to finance, uncovering significant unfairness-41.51% of micro-firms face discrimination compared to non-micro firms. These findings highlight the framework's potential for broader applications in ensuring equitable AI-driven decision-making.
- Abstract(参考訳): 2024年8月1日、欧州連合の人工知能法が施行されたことにより、リスクの高いAIアプリケーションは、厳格な透明性と公正性の基準に従う必要がある。
アルゴリズムの公平性を科学的に監査するにはどうすればいいのか?
現在の方法は通常、より複雑なシナリオを考慮せずに、監査の基本的な検出段階に留まる。
本稿では, 対実フェアネスとピア比較戦略の強みを組み合わせ, アルゴリズムフェアネスを監査するための信頼性と堅牢性を備えた新しい枠組みである「ピア誘導フェアネス」を提案する。
我々のフレームワークは普遍的であり、様々な領域に適用可能であり、歪んだ分布を含む様々なレベルのデータ品質を扱うことができる。
さらに、アルゴリズム的識別による不利な判断が、被験者の固有の制限を生じさせるかどうかを区別し、透明性を高めることができる。
このフレームワークは、AI開発者のための自己評価ツールと、EU AI Actへの準拠を保証する監査者のための外部アセスメントツールの両方として機能する。
我々は、中小企業における金融アクセスの実用性を実証し、非ミクロ企業と比較して、マイクロ確認の41.51%が顔の差別に重大な不公平さを見出している。
これらの知見は、公平なAI駆動意思決定を保証するための幅広い応用のためのフレームワークの可能性を強調している。
関連論文リスト
- Ethical and Scalable Automation: A Governance and Compliance Framework for Business Applications [0.0]
本稿では、AIが倫理的で、制御可能で、実行可能で、望ましいものであることを保証するフレームワークを紹介する。
異なるケーススタディは、学術と実践の両方の環境でAIを統合することで、このフレームワークを検証する。
論文 参考訳(メタデータ) (2024-09-25T12:39:28Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
計算モデルにおける透過的な実装が実現可能かどうかを分析するための枠組みを導出する。
以上の結果から,Blum-Shub-Smale Machinesは,逆問題に対する信頼性の高い解法を確立できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-01-18T15:32:38Z) - Causal Fairness for Outcome Control [68.12191782657437]
本稿では,自動システムにおいて,公平かつ公平な結果変数を最適化することを目的とした,結果制御と呼ばれる特定の意思決定タスクについて検討する。
本稿では、まず因果レンズを通して利益の概念を分析し、特定の個人が肯定的な決定によってどれだけの利益を得られるかを明らかにする。
次に、保護された属性の影響を受けている可能性があることに留意し、これを分析するために使用できる因果的ツールを提案する。
論文 参考訳(メタデータ) (2023-06-08T09:31:18Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Beyond Incompatibility: Trade-offs between Mutually Exclusive Fairness Criteria in Machine Learning and Law [2.959308758321417]
本稿では,3つのフェアネス基準を連続的に補間する新しいアルゴリズム(FAir Interpolation Method: FAIM)を提案する。
我々は,合成データ,CompASデータセット,電子商取引部門による新たな実世界のデータセットに適用した場合のアルゴリズムの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-01T12:47:54Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Algorithmic Fairness and Vertical Equity: Income Fairness with IRS Tax
Audit Models [73.24381010980606]
本研究は、IRSによる税務監査選択を通知するシステムの文脈におけるアルゴリズムフェアネスの問題について検討する。
監査を選択するための柔軟な機械学習手法が、垂直エクイティにどのように影響するかを示す。
この結果は,公共セクター全体でのアルゴリズムツールの設計に影響を及ぼす。
論文 参考訳(メタデータ) (2022-06-20T16:27:06Z) - Fairness Score and Process Standardization: Framework for Fairness
Certification in Artificial Intelligence Systems [0.4297070083645048]
本稿では,データ駆動型AIシステムの公平性を測定するための新しいフェアネススコアを提案する。
また、公正性の概念を運用し、そのようなシステムの商用展開を容易にするためのフレームワークも提供する。
論文 参考訳(メタデータ) (2022-01-10T15:45:12Z) - Understanding Relations Between Perception of Fairness and Trust in
Algorithmic Decision Making [8.795591344648294]
本研究の目的は,人間における帰納的アルゴリズムの公平さと知覚の関係を理解することである。
また,アルゴリズムの公平性が,アルゴリズム決定におけるユーザの信頼にどのように影響するかについても検討する。
論文 参考訳(メタデータ) (2021-09-29T11:00:39Z) - Towards a Flexible Framework for Algorithmic Fairness [0.8379286663107844]
近年、アルゴリズム決定システムにおける非差別性を保証するための多くの異なる定義が提案されている。
本稿では, 最適な輸送手段を利用して, フェアネス定義の相違を補間するフレキシブルな枠組みを提案する。
論文 参考訳(メタデータ) (2020-10-15T16:06:53Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。