論文の概要: On Feasibility of Intent Obfuscating Attacks
- arxiv url: http://arxiv.org/abs/2408.02674v2
- Date: Thu, 29 Aug 2024 13:29:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 18:25:25.220882
- Title: On Feasibility of Intent Obfuscating Attacks
- Title(参考訳): 意図的難読化攻撃の可能性について
- Authors: Zhaobin Li, Patrick Shafto,
- Abstract要約: 本稿では,物体検出器の逆例を生成するために意図難読化法を提案する。
別の重複しないオブジェクトを摂動してターゲットオブジェクトを妨害することで、攻撃者は意図したターゲットを隠す。
対象物体の信頼度や摂動物体の大きさなど,意図的難読化攻撃を特徴付ける成功要因を解析する。
- 参考スコア(独自算出の注目度): 5.854757988966379
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intent obfuscation is a common tactic in adversarial situations, enabling the attacker to both manipulate the target system and avoid culpability. Surprisingly, it has rarely been implemented in adversarial attacks on machine learning systems. We are the first to propose using intent obfuscation to generate adversarial examples for object detectors: by perturbing another non-overlapping object to disrupt the target object, the attacker hides their intended target. We conduct a randomized experiment on 5 prominent detectors -- YOLOv3, SSD, RetinaNet, Faster R-CNN, and Cascade R-CNN -- using both targeted and untargeted attacks and achieve success on all models and attacks. We analyze the success factors characterizing intent obfuscating attacks, including target object confidence and perturb object sizes. We then demonstrate that the attacker can exploit these success factors to increase success rates for all models and attacks. Finally, we discuss main takeaways and legal repercussions.
- Abstract(参考訳): 侵入難読化(Intent obfuscation)は、敵の状況において一般的な戦術であり、攻撃者が標的システムの操作と、実行可能性の回避を可能にする。
驚くべきことに、機械学習システムに対する敵攻撃で実装されることはめったにない。
対象物体を乱すために別の非重複物体を摂動することで、攻撃者は対象物体を隠蔽する。
我々は、ターゲットと未ターゲットの両方の攻撃を使用して、YOLOv3、SSD、RetinaNet、Faster R-CNN、Cascade R-CNNの5つの重要な検出器でランダム化実験を行い、すべてのモデルと攻撃で成功しました。
対象物体の信頼度や摂動物体の大きさなど,意図的難読化攻撃を特徴付ける成功要因を解析する。
次に、攻撃者がこれらの成功要因を利用して、すべてのモデルと攻撃の成功率を高めることを実証する。
最後に、主要な取扱いと法的反感について論じる。
関連論文リスト
- Any Target Can be Offense: Adversarial Example Generation via Generalized Latent Infection [83.72430401516674]
GAKerは任意のターゲットクラスに対して逆例を構築することができる。
本手法は,未知のクラスに対する攻撃成功率を約14.13%で達成する。
論文 参考訳(メタデータ) (2024-07-17T03:24:09Z) - Attacking by Aligning: Clean-Label Backdoor Attacks on Object Detection [24.271795745084123]
ディープニューラルネットワーク(DNN)は、オブジェクト検出タスクにおいて前例のない成功を収めている。
対象物検出タスクに対するバックドア攻撃は、適切に調査され、調査されていない。
そこで本研究では,オブジェクト検出に対して,接地真理アノテーションを変更することなく,簡易かつ効果的なバックドア攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-07-19T22:46:35Z) - Object-fabrication Targeted Attack for Object Detection [54.10697546734503]
物体検出の敵攻撃は 標的攻撃と未標的攻撃を含む。
新たなオブジェクトファブリケーションターゲット攻撃モードは、特定のターゲットラベルを持つ追加の偽オブジェクトをファブリケートする検出器を誤解させる可能性がある。
論文 参考訳(メタデータ) (2022-12-13T08:42:39Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
敵は、ディープニューラルネットワークが誤った分類結果を生成するような摂動画像を攻撃する。
自然の多目的シーンに対する敵対的攻撃を防御するための有望なアプローチは、文脈整合性チェックを課すことである。
本稿では,コンテキスト整合性チェックを回避可能な,コンテキスト整合性攻撃を生成するための最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-29T04:33:06Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
Emphbackdoor攻撃は、深層ニューラルネットワーク(DNN)に隠れたバックドアを埋め込み、トレーニングデータに毒を盛ることを目的としている。
我々は,対象ラベルを画像レベルではなくオブジェクトレベルから扱う,新たな攻撃パラダイムであるemphfine-fine-grained attackを提案する。
実験により、提案手法はわずかなトレーニングデータだけを毒殺することでセマンティックセグメンテーションモデルを攻撃することに成功した。
論文 参考訳(メタデータ) (2021-03-06T05:50:29Z) - Sparse Adversarial Attack to Object Detection [0.8702432681310401]
本研究では, 対人攻撃(Sparse Adversarial Attack, SAA)を提案する。
YOLOv4とFasterRCNNの実験結果から,本手法の有効性が明らかになった。
論文 参考訳(メタデータ) (2020-12-26T07:52:28Z) - Double Targeted Universal Adversarial Perturbations [83.60161052867534]
本稿では, インスタンス別画像依存摂動と汎用的普遍摂動のギャップを埋めるために, 二重目標普遍摂動(DT-UAP)を導入する。
提案したDTAアルゴリズムの幅広いデータセットに対する有効性を示すとともに,物理攻撃の可能性を示す。
論文 参考訳(メタデータ) (2020-10-07T09:08:51Z) - Category-wise Attack: Transferable Adversarial Examples for Anchor Free
Object Detection [38.813947369401525]
本研究では,アンカーフリーなオブジェクトモデルに対する敵例を生成するための効率的かつ効率的なアルゴリズムを提案する。
驚くべきことに、生成した敵の例は、標的となるアンカーフリー物体検出器を効果的に攻撃するだけでなく、他の物体検出器を攻撃するために移動させることもできる。
論文 参考訳(メタデータ) (2020-02-10T04:49:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。