MDM: Advancing Multi-Domain Distribution Matching for Automatic Modulation Recognition Dataset Synthesis
- URL: http://arxiv.org/abs/2408.02714v1
- Date: Mon, 5 Aug 2024 14:16:54 GMT
- Title: MDM: Advancing Multi-Domain Distribution Matching for Automatic Modulation Recognition Dataset Synthesis
- Authors: Dongwei Xu, Jiajun Chen, Yao Lu, Tianhao Xia, Qi Xuan, Wei Wang, Yun Lin, Xiaoniu Yang,
- Abstract summary: Deep learning technology has been successfully introduced into Automatic Modulation Recognition (AMR) tasks.
The success of deep learning is all attributed to the training on large-scale datasets.
In order to solve the problem of large amount of data, some researchers put forward the method of data distillation.
- Score: 35.07663680944459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, deep learning technology has been successfully introduced into Automatic Modulation Recognition (AMR) tasks. However, the success of deep learning is all attributed to the training on large-scale datasets. Such a large amount of data brings huge pressure on storage, transmission and model training. In order to solve the problem of large amount of data, some researchers put forward the method of data distillation, which aims to compress large training data into smaller synthetic datasets to maintain its performance. While numerous data distillation techniques have been developed within the realm of image processing, the unique characteristics of signals set them apart. Signals exhibit distinct features across various domains, necessitating specialized approaches for their analysis and processing. To this end, a novel dataset distillation method--Multi-domain Distribution Matching (MDM) is proposed. MDM employs the Discrete Fourier Transform (DFT) to translate timedomain signals into the frequency domain, and then uses a model to compute distribution matching losses between the synthetic and real datasets, considering both the time and frequency domains. Ultimately, these two losses are integrated to update the synthetic dataset. We conduct extensive experiments on three AMR datasets. Experimental results show that, compared with baseline methods, our method achieves better performance under the same compression ratio. Furthermore, we conduct crossarchitecture generalization experiments on several models, and the experimental results show that our synthetic datasets can generalize well on other unseen models.
Related papers
- A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
We present a framework for fine-tuning large language models (LLMs) using heterogeneous feedback.
First, we combine the heterogeneous feedback data into a single supervision format, compatible with methods like SFT and RLHF.
Next, given this unified feedback dataset, we extract a high-quality and diverse subset to obtain performance increases.
arXiv Detail & Related papers (2024-08-05T23:20:32Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Importance-Aware Adaptive Dataset Distillation [53.79746115426363]
Development of deep learning models is enabled by the availability of large-scale datasets.
dataset distillation aims to synthesize a compact dataset that retains the essential information from the large original dataset.
We propose an importance-aware adaptive dataset distillation (IADD) method that can improve distillation performance.
arXiv Detail & Related papers (2024-01-29T03:29:39Z) - D3A-TS: Denoising-Driven Data Augmentation in Time Series [0.0]
This work focuses on studying and analyzing the use of different techniques for data augmentation in time series for classification and regression problems.
The proposed approach involves the use of diffusion probabilistic models, which have recently achieved successful results in the field of Image Processing.
The results highlight the high utility of this methodology in creating synthetic data to train classification and regression models.
arXiv Detail & Related papers (2023-12-09T11:37:07Z) - Private Synthetic Data Meets Ensemble Learning [15.425653946755025]
When machine learning models are trained on synthetic data and then deployed on real data, there is often a performance drop.
We introduce a new ensemble strategy for training downstream models, with the goal of enhancing their performance when used on real data.
arXiv Detail & Related papers (2023-10-15T04:24:42Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Bridging the Gap: Enhancing the Utility of Synthetic Data via
Post-Processing Techniques [7.967995669387532]
generative models have emerged as a promising solution for generating synthetic datasets that can replace or augment real-world data.
We propose three novel post-processing techniques to improve the quality and diversity of the synthetic dataset.
Experiments show that Gap Filler (GaFi) effectively reduces the gap with real-accuracy scores to an error of 2.03%, 1.78%, and 3.99% on the Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, respectively.
arXiv Detail & Related papers (2023-05-17T10:50:38Z) - FairGen: Fair Synthetic Data Generation [0.3149883354098941]
We propose a pipeline to generate fairer synthetic data independent of the GAN architecture.
We claim that while generating synthetic data most GANs amplify bias present in the training data but by removing these bias inducing samples, GANs essentially focuses more on real informative samples.
arXiv Detail & Related papers (2022-10-24T08:13:47Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - Lessons Learned from the Training of GANs on Artificial Datasets [0.0]
Generative Adversarial Networks (GANs) have made great progress in synthesizing realistic images in recent years.
GANs are prone to underfitting or overfitting, making the analysis of them difficult and constrained.
We train them on artificial datasets where there are infinitely many samples and the real data distributions are simple.
We find that training mixtures of GANs leads to more performance gain compared to increasing the network depth or width.
arXiv Detail & Related papers (2020-07-13T14:51:02Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.