Phonon-Induced Exchange Gate Infidelities in Semiconducting Si-SiGe Spin Qubits
- URL: http://arxiv.org/abs/2408.02742v2
- Date: Wed, 6 Nov 2024 14:12:09 GMT
- Title: Phonon-Induced Exchange Gate Infidelities in Semiconducting Si-SiGe Spin Qubits
- Authors: Matthew Brooks, Rex Lundgren, Charles Tahan,
- Abstract summary: fidelities of exchange operations with semiconductor double quantum dot spin qubits in a Si-SiGe heterostructure are considered.
Results suggest that for elevated temperatures within 200-300 mK, exchange gate operations are not currently limited by bulk phonons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spin-spin exchange interactions between semiconductor spin qubits allow for fast single and two-qubit gates. During exchange, coupling of the qubits to a surrounding phonon bath may cause errors in the resulting gate. Here, the fidelities of exchange operations with semiconductor double quantum dot spin qubits in a Si-SiGe heterostructure coupled to a finite temperature phonon bath are considered. By employing a master equation approach, the isolated effect of each spin-phonon coupling term may be resolved, as well as leakage errors of encoded qubit operations. As the temperature is increased, a crossover is observed from where the primary source of error is due to a phonon induced perturbation of the two electron spin states, to one where the phonon induced coupling to an excited orbital state becomes the dominant error. Additionally, it is shown that a simple trade-off in pulse shape and length can improve robustness to spin-phonon induced errors during gate operations by up to an order of magnitude. Our results suggest that for elevated temperatures within 200-300 mK, exchange gate operations are not currently limited by bulk phonons. This is consistent with recent experiments.
Related papers
- Decoherence of electron spin qubit during transfer between two semiconductor quantum dots at low magnetic fields [0.0]
Electron shuttling is one of the current avenues being pursued to scale semiconductor quantum dot-based spin qubits.
We theoretically analyze the dephasing of a spin qubit that is adiabatically transferred between two tunnel-coupled quantum dots.
arXiv Detail & Related papers (2024-05-20T17:13:46Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Longitudinal coupling between electrically driven spin-qubits and a resonator [0.0]
We study spin qubits confined in quantum dots at zero magnetic fields that are driven periodically by electrical fields and are coupled to a microwave resonator.
We find both transverse and longitudinal couplings between the Floquet spin qubit and the resonator, which can be selectively activated by modifying the driving frequency.
arXiv Detail & Related papers (2023-01-24T17:42:41Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Gate-Tunable Spin-Orbit Coupling in a Germanium Hole Double Quantum Dot [19.029069649697824]
Hole spins confined in semiconductor quantum dot systems have gained considerable interest for their strong spin-orbit interactions (SOIs)
Here we experimentally demonstrate a tunable SOI in a double quantum dot in a Germanium (Ge) hut wire (HW)
This tunability of the SOI could pave the way toward the realization of high-fidelity qubits in Ge HW systems.
arXiv Detail & Related papers (2022-06-08T02:44:31Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Modulated longitudinal gates on encoded spin-qubits via curvature
couplings to a superconducting cavity [0.0]
We propose entangling operations based on the energy curvature couplings of encoded spin qubits to a superconducting cavity.
For a two-qubit entangling gate we explore acquired geometric phases via a time-modulated longitudinal $sigma_z$-coupling.
The proposed schemes seem suitable for remote spin-to-spin entanglement of two spin-qubits or a cluster of spin-qubits.
arXiv Detail & Related papers (2020-10-03T00:04:56Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
arXiv Detail & Related papers (2020-06-08T11:25:16Z) - Exchange coupling in a linear chain of three quantum-dot spin qubits in
silicon [2.161915301690476]
Quantum gates between spin qubits can be implemented leveraging the natural Heisenberg exchange interaction between two electrons in contact with each other.
Superexchange is the coupling between remote spins mediated by a third idle electron that bridges the distance between quantum dots.
We experimentally demonstrate direct exchange coupling and provide evidence for second neighbour mediated superexchange in a linear array of three single-electron spin qubits in silicon.
arXiv Detail & Related papers (2020-04-16T14:01:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.