Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device
- URL: http://arxiv.org/abs/2006.04483v2
- Date: Mon, 29 Jun 2020 09:49:19 GMT
- Title: Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device
- Authors: Mateusz T. M\k{a}dzik, Arne Laucht, Fay E. Hudson, Alexander M. Jakob,
Brett C. Johnson, David N. Jamieson, Kohei M. Itoh, Andrew S. Dzurak, Andrea
Morello
- Abstract summary: Silicon nanoelectronic devices can host single-qubit quantum logic operations with fidelity better than 99.9%.
For the spins of an electron bound to a single donor atom, introduced in the silicon by ion implantation, the quantum information can be stored for nearly 1 second.
Here we demonstrate the conditional, coherent control of an electron spin qubit in an exchange-coupled pair of $31$P donors implanted in silicon.
- Score: 48.7576911714538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Silicon nanoelectronic devices can host single-qubit quantum logic operations
with fidelity better than 99.9%. For the spins of an electron bound to a single
donor atom, introduced in the silicon by ion implantation, the quantum
information can be stored for nearly 1 second. However, manufacturing a
scalable quantum processor with this method is considered challenging, because
of the exponential sensitivity of the exchange interaction that mediates the
coupling between the qubits. Here we demonstrate the conditional, coherent
control of an electron spin qubit in an exchange-coupled pair of $^{31}$P
donors implanted in silicon. The coupling strength, $J = 32.06 \pm 0.06$ MHz,
is measured spectroscopically with unprecedented precision. Since the coupling
is weaker than the electron-nuclear hyperfine coupling $A \approx 90$ MHz which
detunes the two electrons, a native two-qubit Controlled-Rotation gate can be
obtained via a simple electron spin resonance pulse. This scheme is insensitive
to the precise value of $J$, which makes it suitable for the scale-up of
donor-based quantum computers in silicon that exploit the
Metal-Oxide-Semiconductor fabrication protocols commonly used in the classical
electronics industry.
Related papers
- Coherence of a field-gradient-driven singlet-triplet qubit coupled to
many-electron spin states in 28Si/SiGe [0.0]
Engineered spin-electric coupling enables spin qubits in semiconductor nanostructures to be manipulated efficiently and addressed individually.
We demonstrate fast singlet-triplet qubit oscillation in a gate-defined double quantum dot in $28$Si/SiGe with an on-chip micromagnet.
We present evidence of sizable and coherent coupling of the qubit with the spin states of a nearby quantum dot, demonstrating that appropriate spin-electric coupling may enable a charge-based two-qubit gate in a (1,1) charge configuration.
arXiv Detail & Related papers (2023-10-19T09:20:15Z) - Tomography of entangling two-qubit logic operations in exchange-coupled
donor electron spin qubits [26.72272277499726]
Quantum processors require high-fidelity universal quantum logic operations.
No entanglement between donor-bound electron spins has been demonstrated to date.
These results form the necessary basis for scaling up donor-based quantum computers.
arXiv Detail & Related papers (2023-09-27T07:58:37Z) - Bounds to electron spin qubit variability for scalable CMOS architectures [0.2500278693410567]
We chart the spin qubit variability due to the unavoidable atomic-scale roughness of the Si/SiO$$ interface, compiling experiments in 12 devices, and developing theoretical tools.
We correlate the effect of roughness with the variability in qubit position, deformation, valley splitting, valley phase, spin-orbit coupling and exchange coupling.
These variabilities are found to be bounded and lie within the tolerances for scalable architectures for quantum computing as long as robust control methods are incorporated.
arXiv Detail & Related papers (2023-03-27T00:52:39Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Jellybean quantum dots in silicon for qubit coupling and on-chip quantum
chemistry [0.6818394664182874]
Small size and excellent integrability of silicon metal-oxide-semiconductor (SiMOS) quantum dot spin qubits make them an attractive system for mass-manufacturable, scaled-up quantum processors.
This paper investigates the charge and spin characteristics of an elongated quantum dot for the prospects of acting as a qubit-qubit coupler.
arXiv Detail & Related papers (2022-08-08T12:24:46Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Precision tomography of a three-qubit donor quantum processor in silicon [38.42250061908039]
Nuclear spins were among the first physical platforms to be considered for quantum information processing.
We demonstrate universal quantum logic operations using a pair of ion-implanted 31P donor nuclei in a silicon nanoelectronic device.
arXiv Detail & Related papers (2021-06-06T10:30:38Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Deterministic Single Ion Implantation with 99.87% Confidence for
Scalable Donor-Qubit Arrays in Silicon [44.62475518267084]
Group-V-donor spins are attractive qubits for large-scale quantum computer devices.
Group-V-donor spins implanted in an isotopically purified $28$Si crystal make them attractive qubits.
We demonstrate the implantation of single low-energy (14 keV) P$+$ ions with an unprecedented $99.87pm0.02$% confidence.
arXiv Detail & Related papers (2020-09-07T05:23:07Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.