Resilience-Runtime Tradeoff Relations for Quantum Algorithms
- URL: http://arxiv.org/abs/2408.02764v1
- Date: Mon, 5 Aug 2024 18:31:14 GMT
- Title: Resilience-Runtime Tradeoff Relations for Quantum Algorithms
- Authors: Luis Pedro GarcĂa-Pintos, Tom O'Leary, Tanmoy Biswas, Jacob Bringewatt, Lukasz Cincio, Lucas T. Brady, Yi-Kai Liu,
- Abstract summary: A leading approach to algorithm design aims to minimize the number of operations in an algorithm's compilation.
We develop a framework to characterize the resilience of an algorithm to perturbative noises.
We show how this framework can be leveraged to identify compilations of an algorithm that are better suited to withstand certain noises.
- Score: 0.7371081631199642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A leading approach to algorithm design aims to minimize the number of operations in an algorithm's compilation. One intuitively expects that reducing the number of operations may decrease the chance of errors. This paradigm is particularly prevalent in quantum computing, where gates are hard to implement and noise rapidly decreases a quantum computer's potential to outperform classical computers. Here, we find that minimizing the number of operations in a quantum algorithm can be counterproductive, leading to a noise sensitivity that induces errors when running the algorithm in non-ideal conditions. To show this, we develop a framework to characterize the resilience of an algorithm to perturbative noises (including coherent errors, dephasing, and depolarizing noise). Some compilations of an algorithm can be resilient against certain noise sources while being unstable against other noises. We condense these results into a tradeoff relation between an algorithm's number of operations and its noise resilience. We also show how this framework can be leveraged to identify compilations of an algorithm that are better suited to withstand certain noises.
Related papers
- Practical implementation of a single-qubit rotation algorithm [0.0]
The Toffoli is an important universal quantum gate, and will alongside the Clifford gates be available in future Fault-Tolerant Quantum Computing hardware.
We evaluate the performance of a recently proposed single-qubit rotation algorithm using the Clifford+Toffoli gate set.
arXiv Detail & Related papers (2024-10-24T13:53:21Z) - Optimized Noise Suppression for Quantum Circuits [0.40964539027092917]
Crosstalk noise is a severe error source in, e.g., cross-resonance based superconducting quantum processors.
Intrepid programming algorithm extends previous work on optimized qubit routing by swap insertion.
We evaluate the proposed method by characterizing crosstalk noise for two chips with up to 127 qubits.
arXiv Detail & Related papers (2024-01-12T07:34:59Z) - Error-mitigated fermionic classical shadows on noisy quantum devices [0.3775283002059579]
Classical shadow (CS) algorithms offer a solution by reducing the number of quantum state copies needed.
We propose an error-mitigated CS algorithm assuming gate-independent, time-stationary, and Markovian (GTM) noise.
Our algorithm efficiently estimates $k$-RDMs with $widetildemathcal O(knk)$ state copies and $widetildemathcal O(sqrtn)$ calibration measurements for GTM noise.
arXiv Detail & Related papers (2023-10-19T13:27:19Z) - On proving the robustness of algorithms for early fault-tolerant quantum computers [0.0]
We introduce a randomized algorithm for the task of phase estimation and give an analysis of its performance under two simple noise models.
We calculate that the randomized algorithm can succeed with arbitrarily high probability as long as the required circuit depth is less than 0.916 times the dephasing scale.
arXiv Detail & Related papers (2022-09-22T21:28:12Z) - Characterizing and mitigating coherent errors in a trapped ion quantum
processor using hidden inverses [0.20315704654772418]
Quantum computing testbeds exhibit high-fidelity quantum control over small collections of qubits.
These noisy intermediate-scale devices can support a sufficient number of sequential operations prior to decoherence.
While the results of these algorithms are imperfect, these imperfections can help bootstrap quantum computer testbed development.
arXiv Detail & Related papers (2022-05-27T20:35:24Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - On the Cryptographic Hardness of Learning Single Periodic Neurons [42.86685497609574]
We show a simple reduction which demonstrates the cryptographic hardness of learning a single neuron over isotropic Gaussian distributions in the presence of noise.
Our proposed algorithm is not a gradient-based or an adversarial SQ-time algorithm, but is rather based on the celebrated Lenstra-LenstraLov'asz (LLL) lattice basis reduction algorithm.
arXiv Detail & Related papers (2021-06-20T20:03:52Z) - Learning based signal detection for MIMO systems with unknown noise
statistics [84.02122699723536]
This paper aims to devise a generalized maximum likelihood (ML) estimator to robustly detect signals with unknown noise statistics.
In practice, there is little or even no statistical knowledge on the system noise, which in many cases is non-Gaussian, impulsive and not analyzable.
Our framework is driven by an unsupervised learning approach, where only the noise samples are required.
arXiv Detail & Related papers (2021-01-21T04:48:15Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Efficient Algorithms for Causal Order Discovery in Quantum Networks [44.356294905844834]
Given black-box access to the input and output systems, we develop the first efficient quantum causal order discovery algorithm.
We model the causal order with quantum combs, and our algorithms output the order of inputs and outputs that the given process is compatible with.
Our algorithms will provide efficient ways to detect and optimize available transmission paths in quantum communication networks.
arXiv Detail & Related papers (2020-12-03T07:12:08Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.